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Accurate, yet simple and efficient, formulae are presented for calculation of the

electrostatic potential (ESP), electric field (EF) and electric field gradient

(EFG) from the aspherical Hansen–Coppens pseudoatom model of electron

density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They are based

on the expansion of |r0 � r|�1 in spherical harmonics and the incomplete gamma

function for a Slater-type function of the form Rl(r) = rn exp(��r). The formulae

are valid for 0 � r � 1 and are easily extended to higher values of l. Special

treatment of integrals is needed only for functions with n = l and n = l + 1 at r = 0.

The method is tested using theoretical pseudoatom parameters of the

formamide molecule obtained via reciprocal-space fitting of PBE/6-31G**

densities and experimental X-ray data of Fe(CO)5. The ESP, EF and EFG values

at the nuclear positions in formamide are in very good agreement with those

directly evaluated from density-functional PBE calculations with 6-31G**,

aug-cc-pVDZ and aug-cc-pVTZ basis sets. The small observed discrepancies are

attributed to the different behavior of Gaussian- and Slater-type functions near

the nuclei and to imperfections of the reciprocal-space fit. An EF map is

displayed which allows useful visualization of the lattice EF effects in the crystal

structure of formamide. Analysis of experimental 100 K X-ray data of Fe(CO)5

yields the value of the nuclear quadrupole moment Q(57Fem) = 0.12 � 10�28 m2

after taking into account Sternheimer shielding/antishielding effects of the core.

This value is in excellent agreement with that reported by Su & Coppens [Acta

Cryst. (1996), A52, 748–756] but slightly smaller than the generally accepted

value of 0.16 � 5% � 10�28 m2 obtained from combined theoretical/spectro-

scopic studies [Dufek, Blaha & Schwarz (1995). Phys. Rev. Lett. 25, 3545–3548].

1. Introduction

The electrostatic potential V(r) (ESP) is one of the most

important properties in the study of molecular reactivity and

the analysis of molecular bonding and packing in crystals.

It is related to the physically observable property of the

electron density (ED) via Poisson’s equation (Coppens,

1997):

r2VðrÞ ¼ �4��totalðrÞ; ð1Þ

where �total includes both electronic and nuclear charges:

�totalðrÞ ¼ �nucðrÞ � �ðrÞ ð2Þ

and �(r) is the electron density. For a continuous charge

distribution, the potential is obtained by integration of the

density over all space:

VðrÞ ¼
Z
�totalðr0Þ
jr0 � rj d3r0; ð3Þ

where r and r0 have an arbitrary common origin. The negative

of the first derivative of the ESP is the electric field E(r) (EF):

EðrÞ ¼ �rVðrÞ ¼ �i
@VðrÞ
@x
� j

@VðrÞ
@y
� k

@VðrÞ
@z

; ð4Þ

while the negative of the second derivative of the ESP is the

electric field gradient (EFG):

E��ðrÞ ¼ �
@2VðrÞ
@r�@r�

: ð5Þ

Just as the total density �total(r), the ESP in the molecule can

be separated into electronic Velec(r) and nuclear Vnuc(r)

contributions:
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VðrÞ ¼ VnucðrÞ þ VelecðrÞ ¼
X

i

Vnuc
i ðrÞ

 !
þ VelecðrÞ

¼
XN

i¼1

Zi

jRi � rj �
Z

�ðr0Þ
jr0 � rj d

3r0; ð6Þ

where i = 1, . . . , N is the index of the nucleus located at Ri

carrying positive charge Zi. The second term represents the

contribution of the continuous distribution of the negatively

charged electron density �(r). When calculating V(r) at any

point in space where r 6¼ Ri, both terms need to be taken into

account, while, at r ¼ Ri, the contribution of the nuclear

potential of the ith nucleus (located exactly at Ri) must be

omitted. The calculation of the nuclear potential and its

derivatives is trivial and need not be described here. It is the

calculation of the electronic potential Velec(r) that presents

more problems.

Various methods for calculating the ESP from X-ray

diffraction data have been described and consequently applied

in the literature. These methods can basically be split into two

very different groups: (i) directly from experimentally

measured structure factors (Bertaut, 1978; Stewart, 1979;

Schwarzenbach & Thong, 1979) and (ii) from static models of

electron density. Discussion of methods belonging to group (i)

lies outside the scope of this paper. More important is the

second group, which allows the calculation of electrostatic

properties of atoms and molecules from the electron densities

deconvoluted from nuclear motions. These are relatively

unaffected by Fourier-series termination and allow a direct

comparison with theoretical results. These methods are based

on so-called pseudoatom charge-density models.

By far the most widely used aspherical pseudoatom form-

alism is based on the Hansen–Coppens multipolar model of

ED (Coppens, 1997; Hansen & Coppens, 1978). In this form-

alism, the electron density at each point in space �(r) is

described by a superposition of atomic like densities �at(r),

called pseudoatoms:

�ðrÞ ¼P �atðrÞ: ð7Þ
Each pseudoatom is modeled using the modified Laplace

series:

�atðrÞ ¼ Pcore�coreðrÞ þ Pval�
3�valð�rÞ

þPlmax

l¼0

�03Rlð�0rÞ
Pl

m¼0

Plm�dlm�ð�Þ: ð8Þ

The first and second terms of expansion are the spherically

averaged Hartree–Fock core and valence densities (Clementi

& Roetti, 1974). The population of the core, Pcore, is always

frozen, while the population of the spherical valence shell Pval

is refined together with the expansion–contraction parameter

�. The third term describes the aspherical deformation density.

Coefficients Plm� are the population parameters and �0 are the

dimensionless adjustment coefficients of the radial functions

Rl. In equation (8), r is the distance from the pseudoatom

center, r = |r � R|, and � are the corresponding angular

coordinates. The angular factor dlm� is a real density-

normalized spherical harmonic:

dlm�ð�Þ ¼ Dlmylm�ð�Þ; ð9Þ

where m � 0 and ylm� is the normalized linear combination of

complex spherical harmonics:

y00 ¼ Y00

ylmþ ¼ ð�1ÞmðYlm þ Yl;�mÞ=
ffiffiffi
2
p
; m> 0

ylm� ¼ ð�1ÞmðYlm � Yl;�mÞ=
ffiffiffiffiffiffi
�2
p

; m> 0:

ð10Þ

Renormalization factors Dlm are given by Paturle & Coppens

(1988) and Coppens (1997).

Calculation of the electrostatic potential and its first and

second derivatives, i.e. negatives of electric field and electric

field gradient, respectively, from the pseudoatom model is not

straightforward. It was shown that the electrostatic potential

can be evaluated from the pseudoatom model in various ways,

e.g. directly from �(r) or from its truncated Fourier-series

expansion (Brown & Spackman, 1994).

The method of Su & Coppens (1992, 1996) is based on the

Fourier convolution theorem previously applied by Epstein &

Swanton (1982) to a calculation of the EFG. While it does not

contain approximations and is formally exact at any point in

space, it involves the evaluation of fairly complicated one-

electron two-center integrals. This method was encoded in the

computer program MOLPROP and later included in the

experimental charge-density package XD (Koritsanszky et al.,

2003). However, the program does not always reproduce the

correct results when theoretical structure factors are used to

evaluate the physical properties. It is not clear whether this is

due to programming errors or errors in the derivation of two-

center integrals [labeled as AN;l1;l2;k
ðZ;RÞ in the original

paper]. Note that the method of Su & Coppens only allows

calculation of the traceless EFG tensor at the nuclear posi-

tions.

Several methods for the calculation of the ESP/EFG were

proposed by Brown & Spackman (1994). The direct-space

evaluation of the EFG, also based on the Fourier transform

theorem, is closely related to that of Su & Coppens. It was

included in the experimental charge-density package

VALRAY (Stewart et al., 1998). These authors also presented

the combined Fourier/direct-space evaluation of the EFG, as

well as calculation of the EFG via numerical differentiation of

the ESP. While giving more or less reasonable results, these

methods are either too computationally demanding or have

convergence problems with Fourier sums.

Ghermani, Bouhmaida, Lecomte and co-workers (Lecomte

et al., 1992; Ghermani, Bouhmaida & Lecomte, 1993; Gher-

mani, Lecomte & Bouhmaida, 1993; Ghermani et al., 1994;

Bouhmaida et al., 1997) reported expressions for the ESP

derived directly from the Hansen–Coppens density model

[equation (8)], in which the ESP due to a pseudoatom is

expanded in the same way as the density �at(r) itself [equation

(8)], i.e.

VatðrÞ ¼ VcoreðrÞ þ VvalðrÞ þ�VðrÞ: ð11Þ
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Here Vcore(r), Vval(r) and �V(r) are the spherical core,

spherical valence and aspherical deformation contributions,

respectively, and are given by

VcoreðrÞ ¼
Z

jr� Rj �
Z1
0

�coreðr0Þ
jr� R� r0j d3r0; ð12Þ

VvalðrÞ ¼ �
Z1
0

Pval�
03�valð�0r0Þ

jr� R� r0j d3r0; ð13Þ

�VðrÞ ¼ �4�
X

lm

�0Plm

2l þ 1

�
1

�0lþ1jr� Rjlþ1

Z�0 jr�Rj

0

tlþ2RlðtÞ dt

þ �0ljr� Rjl
Z1

�0jr�Rj

RlðtÞ
tl�1

dt

�
dlmð�Þ; ð14Þ

where R is the position of the nucleus and r0 is the position

vector relative to R [unlike that in equation (3)]. Note that, in

expression (12), the contribution of the nuclear potential is

explicitly combined with the core-electron contribution.

Formula (14) was derived using Green’s function and the

property of orthogonality of the spherical harmonic functions

and is valid for any point in space, since no approximations

are used. These formulae were implemented in the program

ELECTROS (Ghermani et al., 1992) derived from the earlier

program MOLPOT (He, 1983). Numerous studies have been

published using this approach.

In the current paper, we review the derivation of equation

(14), providing more detail than available in the literature. In

particular, we call attention to practical problems associated

with numerical instabilities, and present simple stable

expressions for the ESP, EF and EFG that overcome these

problems. We apply our methods in a theoretical study of the

EF in the crystal structure of formamide and in a determina-

tion of the 57Fem nuclear quadrupolar moment from experi-

mental X-ray diffraction data.

2. Calculation of the electronic potential and its
derivatives for Slater-type functions

Each term in the pseudoatom formalism (8) can be reduced to

a linear combination of Slater-type (Slater, 1932) density basis

functions with the general form

�ðrÞ ¼ RðrÞdlm�ð�Þ ¼ Nðn; �Þrn expð��rÞdlm�ð�Þ; ð15Þ

where � is the effective exponent and N(n, �) is the normal-

ization factor (Coppens, 1997). The corresponding electro-

static potential is

V�ðrÞ ¼ �
Z

�ðr0Þ
jr0 � rj d3r0: ð16Þ

jr0 � rj�1 can be expanded in real spherical harmonics

(Jackson, 1975):

1

jr0 � rj ¼
X

l

4�

2l þ 1

rl
<

rlþ1
>

X
m

ylm�ð�Þylm�ð�0Þ; ð17Þ

where r< is the smaller and r> is the greater of jr� Rj and

jr0 � Rj. Note that the ylm� are obtained by unitary transfor-

mation of the Ylm, which implies that the form of the spherical

harmonic addition theorem (Edmonds, 1974) is preserved, i.e.

Pl

m¼�l

Y�lmð�ÞYlmð�0Þ ¼
Pl

m¼0

ylm�ð�Þylm�ð�0Þ: ð18Þ

When (15) and (17) are inserted into (16), the only term in the

double sum that survives after integration over �0 is that term

for which the lm� indices match those in �(r). This follows

immediately from orthonormality of the ylm� functions. Thus,

V�ðrÞ ¼
4�

2l þ 1
Nðn; �Þdlm�ð�Þ

Z1
0

rl
<

rlþ1
>

ðr0Þnþ2 expð��r0Þ dr0:

ð19Þ
The radial integral in (15) splits into two terms:

Iðn; l; �rÞ ¼
Z1
0

rl
<

rlþ1
>

rnþ2 expð��rÞ dr

¼ 1

jr� Rjlþ1

Zjr�Rj

0

rnþlþ2 expð��rÞ dr

þ jr� Rjl
Z1
jr�Rj

rnþ1�l expð��rÞ dr

¼ I1ðn; l; �rÞ þ I2ðn; l; �rÞ; ð20Þ
so expression (19) becomes simply

V�ðrÞ ¼
4�

2l þ 1
Nðn; �Þdlm�ð�ÞIðn; l; �rÞ: ð21Þ

Essentially the same formula is given by Ghermani, Bouh-

maida, Lecomte and co-workers (Lecomte et al., 1992; Gher-

mani et al., 1992; Ghermani, Lecomte & Bouhmaida, 1993;

Ghermani, Bouhmaida & Lecomte, 1993; Ghermani et al.,

1994; Bouhmaida et al., 1997). Integrals I1(n, l, �r) and

I2(n, l, �r) have the form of the incomplete gamma function (te

Velde, 1990; te Velde et al., 2001):

I1ðn; l; �rÞ ¼ ðnþ l þ 2Þ!
�nþ2

1

ð�rÞlþ1
1� expð��rÞ

Xnþlþ2

i¼0

ð�rÞi
i!

" #
;

ð22Þ

I2ðn; l; �rÞ ¼ ðn� l þ 1Þ!
�nþ2

ð�rÞl expð��rÞ
Xn�lþ1

i¼0

ð�rÞi
i!
: ð23Þ

The exponential terms in equations (22) and (23) represent

the effects of the interpenetration of the charge-density

distributions. The remaining term in equation (22) is the radial

factor for the potential of a point multipole. These expressions

are satisfactory for large values of �r but their straightforward

evaluation for small values of �r results in severe numerical
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round-off errors as illustrated in Table 1. Numerical errors are

relatively insensitive to n but grow rapidly with increasing l

and decreasing �r. The corresponding errors for first and

second derivatives required for evaluation of EF and EFG are

significantly greater than those for the ESP. The numerical

errors are entirely due to the term I1(n, l, �r), and can be

avoided by rearranging equation (22):

I1ðn; l; �rÞ ¼ ðnþ l þ 2Þ!
�nþ2

1

ð�rÞlþ1
expð��rÞ

X1
i¼nþlþ3

ð�rÞi
i!

¼ ðnþ l þ 2Þ!
�nþ2

expð��rÞ
X1

i¼nþ2

ð�rÞi
ðiþ l þ 1Þ!: ð24Þ

This is a well behaved expression for any r. The rate of

convergence of this infinite series is reported in Table 2. Thus,

expression (24) is recommended for use for ‘small’ values of �r

while expression (22) is preferred for medium and large values

of �r as it converges more rapidly in that case.

Alternatively, integral I(n, l, �r) can be replaced with its

Taylor-series expansion:

Iðn; l; �rÞ ¼ 1

�nþ2

�
ðn� l þ 1Þ!ð�rÞl

� ð�rÞnþ2
X1
k¼0

ð��rÞkð2l þ 1Þ
k!ðkþ n� l þ 2Þðkþ nþ l þ 3Þ

�
:

ð25Þ

Table 2 reports the number of terms required to achieve given

accuracy when computing both I(n, l, �r) and its derivatives.

Errors are relatively insensitive to l and n.

Formula (21) can be directly applied to the deformation

part of the pseudoatom expansion because the spherical

harmonics of deformation functions are already density

normalized (Coppens, 1997). The spherical core and valence

densities are, however, calculated from products of wave-

function-normalized Slater functions. Nevertheless, the

product of two Slater functions on the same center is still a

Slater function:

N1rn1 expð��1rÞN2rn2 expð��2rÞ
¼ ðN1N2Þðrn1þn2 Þ exp½�ð�1 þ �1Þr�
¼ N3rn3 expð��3rÞ; ð26Þ

therefore, formula (21) can still be applied.

The first (EF) and second (EFG) derivatives of the ESP are

then obtained by straightforward differentiation of expression

(21).

3. Calculation of the electronic potential and its
derivatives near r = 0

Functions dlm�(�) and their derivatives are poorly behaved

near the origin, as they contain direction cosines, so we

remove a factor rl from I(n, l, �r) and incorporate it into the

angular factor:

V�ðrÞ ¼
4�

2l þ 1
Nðn; �Þ½dlm�ð�Þrl�½r�lIðn; l; �rÞ�: ð27Þ

Note that all terms in (25) contain powers of �r of l or higher.

For l � 4, derivatives of dlm�(�)rl functions are simple and

well behaved at any r. For example, the second partial deriv-

ative of d41�(�)r4 w.r.t. xy is L41�(�6xz), where L41� = 0.474

is the density function normalization factor (Paturle &

Coppens, 1988). No second derivative is more complicated

than that of d40(�)r4 w.r.t. xx, which is simply

L40(36x2 + 12y2 � 48z2). Note that first derivatives of

dlm�(�)rl vanish at r = 0 for all functions except for

@½d11þr�
@x

¼ @½d11�r�
@y

¼ @½d10r�
@z
¼ L1m ¼ 0:31831: ð28Þ

The second derivatives of dlm�(�)rl vanish at r = 0 for all

functions except for

@2½d21r2�
@x@z

¼ @
2½d21�r2�
@y@z

¼ @
2½d22r2�
@x@x

¼ @
2½d22�r2�
@x@y

¼ L2m;

@2½d20r2�
@x2

¼ @
2½d20r2�
@y2

¼ �2L20;

@2½d20r2�
@z2

¼ 4L20;
@2½d22r2�
@y2

¼ �L22:

ð29Þ

We define function G(r) as follows:

GðrÞ ¼ r�lIðn; l; �rÞ: ð30Þ
To simplify the notation of G, the dependence on the n and l

indices is implicitly understood. Let

j ¼ n� l � 0: ð31Þ
The G(r) function is finite and smooth at the origin and decays

to zero as r�2l�1 for large r. For small r, the Taylor expansion
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Table 2
Number of terms in equations (24) and (25) needed to achieve given
accuracy.

Number of significant digits

�r 10 15

0.25 10 13
0.50 12 16
0.75 14 18
1.00 15 20
1.25 17 21
1.50 18 23

Table 1
Number of significant digits lost in direct evaluation of formulas (22) and
(23).

l

�r 0 1 2 3 4

0.25 1 4 6 9 12
0.50 1 2 5 8 9
0.75 0 3 4 6 9
1.00 0 2 4 5 7
1.25 0 1 3 5 7
1.50 1 2 1 4 6
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can be used. Table 2 is equally applicable to the Taylor-series

expansion of G(r) and its derivatives:

GðrÞ ¼ 1

�jþ2
ðjþ 1Þ!þ ð�1Þjþ1

X1
k¼jþ2

ð��rÞkð2l þ 1Þ
kðk� j� 2Þ!ð2l þ 1þ kÞ

" #
:

ð32Þ
Alternatively,

GðrÞ ¼ ðjþ 1Þ!
�jþ2

� rjþ2
X1
k¼0

ð��rÞkð2l þ 1Þ
k!ðkþ jþ 2Þð2l þ 3þ jþ kÞ: ð33Þ

For example, when n = l then

GðrÞ ¼ 1

�2
� r2 ð2l þ 1Þ

2ð2l þ 3Þ �
ð�rÞð2l þ 1Þ

3ð2l þ 4Þ þ
ð�rÞ2ð2l þ 1Þ

8ð2l þ 5Þ � . . .

� �
;

j ¼ 0: ð34Þ
When n = l + 1, then

GðrÞ ¼ 2

�3
� r3 ð2l þ 1Þ

3ð2l þ 4Þ �
ð�rÞð2l þ 1Þ

4ð2l þ 5Þ þ
ð�rÞ2ð2l þ 1Þ

10ð2l þ 6Þ � . . .

� �
;

j ¼ 1: ð35Þ
Expressions (34) and (35) both have non-zero terms in r3,

which creates singularities in the second derivatives d2r3/dq2,

where q = x, y, z. This can be circumvented as discussed below.

Define A(r) as follows:

AðrÞ ¼ dGðrÞ
r dr

� �
¼ ð�1Þjþ1

�j

X1
k¼j

ð��rÞkð2l þ 1Þ
ðk� jÞ!ð2l þ 3þ kÞ: ð36Þ

Alternatively,

AðrÞ ¼ �rj
X1
k¼0

ð��rÞkð2l þ 1Þ
k!ð2l þ 3þ jþ kÞ: ð37Þ

Note that A(r) is well behaved for small r for all l and n. Note

also that (37) has a non-zero term linear in r when j = 0 or j = 1.

These linear terms have implications for B(r).

Define B(r) as follows:

BðrÞ ¼ d

r dr

dGðrÞ
rdr

� �� �
¼ dAðrÞ

r dr

� �

¼ ð�1Þjþ1

�j�2

X1
k¼j�2

ð��rÞkðkþ 2Þð2l þ 1Þ
ðkþ 2� jÞ!ð2l þ 5þ kÞ: ð38Þ

Alternatively,

BðrÞ ¼ �rj�2
X1
k¼0

ð��rÞkðkþ jÞð2l þ 1Þ
k!ð2l þ 3þ jþ kÞ : ð39Þ

Note that the first term vanishes in the sums (38) and (39)

when j = 0, giving

BðrÞ ¼ �
r

X1
k¼0

ð��rÞkð2l þ 1Þ
k!ð2l þ 4þ kÞ ; j ¼ 0: ð40Þ

Alternatively,

BðrÞ ¼ �ð2l þ 1Þ
rð2l þ 4Þ � �

2
X1
k¼0

ð��rÞkð2l þ 1Þ
ðkþ 1Þ!ð2l þ 5þ kÞ; j ¼ 0: ð41Þ

If n = l + 1 then equation (39) can be expressed as follows:

BðrÞ ¼ �ð2l þ 1Þ
rð2l þ 4Þ þ �

X1
k¼0

ð��rÞkðkþ 2Þð2l þ 1Þ
ðkþ 1Þ!ð2l þ 5þ kÞ ; j ¼ 1:

ð42Þ
The terms r�1 in (41) and (42) require special care when r = 0.

They become infinite at the origin but are multiplied by

angularly dependent factors which are zero at the origin. It

turns out in these cases that the zeros are of higher order than

infinity so their product is zero.

The first and partial second derivatives are then straight-

forward:

@GðrÞ
@x
¼ dGðrÞ

dr

� �
@r

dx

� �
¼ xAðrÞ: ð43Þ

Similarly,

@GðrÞ
@y
¼ yAðrÞ ð44Þ

and

@2GðrÞ
@x2

¼ @½xAðrÞ�
@x

� �
¼ AðrÞ þ x2BðrÞ: ð45Þ

Similarly,

@2GðrÞ
@x@y

¼ @½xAðrÞ�
@y

� �
¼ xyBðrÞ: ð46Þ

These formulae should be used for small �r.

At r = 0, derivatives are much simplified:

Gð0Þ ¼ ðjþ 1Þ!
�jþ2

ð47Þ
@GðrÞ
@x

� �
0

¼ @GðrÞ
@y

� �
0

¼ @GðrÞ
@z

� �
0

¼ 0 ð48Þ
@2GðrÞ
@x2

� �
0

¼ @2GðrÞ
@y2

� �
0

¼ @2GðrÞ
@z2

� �
0

¼ Að0Þ ¼
�ð2lþ1Þ
ð2lþ3Þ when j ¼ 0

0 when j > 0

(
ð49Þ

@GðrÞ
@x@y

� �
0

¼ @GðrÞ
@x@z

� �
0

¼ @GðrÞ
@y@z

� �
0

¼ 0: ð50Þ

4. Applications of the method

Calculations of electrostatic properties from the Hansen–

Coppens pseudoatom formalism were performed using the

newly derived formulae encoded in the new version of

XDPROP, part of the XD package. To test the new formulae

both theoretical and experimental data were used.

4.1. ESP, EF and EFG at nuclear positions in the formamide

molecule from theoretical data

In a first example, a formamide molecule with a geometry

extracted from the crystal of formamide (Stevens, 1978) was
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chosen. Theoretical calculations were performed with the

Gaussian03 (2004) suite of programs at the density-functional

(Hohenberg & Kohn, 1964) level of theory using the 1996

exchange and correlation functionals of Perdew, Burke &

Ernzerhof (1996, 1997) (PBE) and 6-31G** (Hariharan &

Pople, 1973), aug-cc-pVDZ (Dunning, 1989; Kendall et al.,

1992) and aug-cc-pVTZ (Dunning, 1989; Kendall et al., 1992)

series of basis sets (labeled as PBE/6-31G**, PBE/aug-cc-

pVDZ and PBE/aug-cc-pVTZ, respectively).

For the PBE/6-31G** calculation, complex static valence-

only structure factors in the range of 0 < sin �/� < 1.1 Å�1 were

obtained by analytic Fourier transform of the molecular

charge densities for reciprocal-lattice points corresponding to

a pseudocubic cell with 30 Å edges. These data were fitted in

terms of pseudoatom parameters as given in the Hansen–

Coppens pseudoatom model [equation (8)] using the XD

program suite (Koritsanszky et al., 2003). Phases of all reflec-

tions were reset to the theoretical values after each refinement

cycle. Both radial screening factors (�, �0) were refined inde-

pendently for each atom, with the exception of the chemically

equivalent H atoms which shared the same � and �0 param-

eters. The multipolar expansion was truncated at the hexa-

decapolar level (lmax = 4) for the non-H atoms and at the

quadrupolar level (lmax = 2) for H atoms, for which only bond-

directed functions of l, m = 1, 0 and 2, 0 were refined. In order

to reduce the number of least-squares variables, the following

local-symmetry constraints were imposed: mm2 symmetry for

N and m symmetry for O and C atoms. A molecular electro-

neutrality constraint was also applied. Refinement of valence-

only structure factors yield an R factor of 3%, with a ratio of

the number of calculated structure factors to the number of

refined variables of 10502.

Tables 3–5 list the ESP, EF and EFG values at the nuclear

positions as obtained directly from theoretical calculations

and from the pseudoatom model, the latter labeled XD/PBE/

6-31G**. Electrostatic properties at the nuclear positions from

theoretical data were calculated with the Gaussian03 program.

Agreement in all quantities is very good, taking into account

the differences between Gaussian- and Slater-type functions

and the fact that the projection of the Gaussian density onto

the pseudoatom model is not perfect. Especially important is

the fact that the asphericity of the EFG tensor at the nuclear

positions of the H atoms is reproduced rather well despite

small differences in each of the values. In general, the

pseudoatom model gives slightly higher values of all proper-

ties at the nuclear positions compared to the Gaussian

calculations. This is attributed to the different behavior of

Gaussian- and Slater-type functions near r = 0, as well as the

imperfect fit of the theoretical data.
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Table 3
ESP and vector components of the EF at the nuclear positions in
formamide (atomic units) from different methods.

All components in this and the following tables refer to a global Cartesian
coordinate system (atomic coordinates listed in Table 6, Appendix A)

Electric field

Potential X Y Z

O(1)
PBE/6-31G** �22.34 �0.096 �0.051 0.001
PBE/aug-cc-pVDZ �22.35 �0.065 �0.033 0.001
PBE/aug-cc-pVTZ �22.36 �0.031 �0.016 0.000
XD/PBE/6-31G** �22.42 �0.274 �0.174 0.004

N(2)
PBE/6-31G** �18.30 �0.002 �0.001 �0.001
PBE/aug-cc-pVDZ �18.32 �0.004 0.001 �0.001
PBE/aug-cc-pVTZ �18.32 �0.005 0.002 �0.001
XD/PBE/6-31G** �18.44 �0.019 �0.009 0.000

C(3)
PBE/6-31G** �14.65 �0.019 0.006 0.001
PBE/aug-cc-pVDZ �14.66 �0.015 0.010 0.002
PBE/aug-cc-pVTZ �14.67 �0.013 �0.001 0.001
XD/PBE/6-31G** �14.76 �0.026 0.001 0.000

H(4)
PBE/6-31G** �1.00 0.021 0.006 0.000
PBE/aug-cc-pVDZ �0.98 0.027 0.011 0.000
PBE/aug-cc-pVTZ �0.99 0.018 0.004 0.000
XD/PBE/6-31G** �1.00 0.013 �0.010 0.000

H(5)
PBE/6-31G** �1.00 0.005 �0.017 0.000
PBE/aug-cc-pVDZ �0.98 0.006 �0.024 0.000
PBE/aug-cc-pVTZ �0.99 0.005 �0.013 0.000
XD/PBE/6-31G** �1.02 0.001 0.010 0.000

H(6)
PBE/6-31G** �1.10 0.005 0.026 �0.001
PBE/aug-cc-pVDZ �1.07 0.005 0.031 �0.001
PBE/aug-cc-pVTZ �1.09 0.006 0.021 �0.001
XD/PBE/6-31G** �1.09 0.003 0.022 �0.007

Table 4
Components of the EFG tensor at the nuclear positions in formamide
(atomic units) from different methods.

XX XY XZ YY YZ ZZ

O(1)
PBE/6-31G** �1216 �1.02 0.02 �1215 0.015 �1216
PBE/aug-cc-pVDZ �1246 �1.00 0.02 �1245 0.014 �1246
PBE/aug-cc-pVTZ �1248 �1.00 0.02 �1247 0.014 �1249
XD/PBE/6-31G** �1306 �0.80 �0.03 �1305 0.047 �1306

N(2)
PBE/6-31G** �798 �0.023 �0.032 �798 �0.004 �797
PBE/aug-cc-pVDZ �819 �0.024 �0.031 �819 �0.004 �818
PBE/aug-cc-pVTZ �821 �0.018 �0.031 �821 �0.003 �819
XD/PBE/6-31G** �863 �0.015 �0.012 �864 �0.013 �863

C(3)
PBE/6-31G** �492 0.050 0.000 �492 0.001 �493
PBE/aug-cc-pVDZ �505 0.053 0.000 �505 0.000 �506
PBE/aug-cc-pVTZ �507 0.055 0.000 �507 0.001 �507
XD/PBE/6-31G** �534 0.048 �0.002 �534 �0.012 �535

H(4)
PBE/6-31G** �1.95 �0.28 �0.012 �1.78 �0.008 �1.49
PBE/aug-cc-pVDZ �1.83 �0.28 �0.012 �1.66 �0.008 �1.38
PBE/aug-cc-pVTZ �2.00 �0.28 �0.012 �1.83 �0.008 �1.55
XD/PBE/6-31G** �2.29 �0.30 �0.012 �2.09 �0.009 �1.82

H(5)
PBE/6-31G** �1.54 0.048 �0.002 �2.11 0.002 �1.47
PBE/aug-cc-pVDZ �1.43 0.048 �0.001 �2.00 0.002 �1.37
PBE/aug-cc-pVTZ �1.59 0.048 �0.001 �2.16 0.002 �1.53
XD/PBE/6-31G** �1.87 0.049 �0.001 �2.46 0.002 �1.82

H(6)
PBE/6-31G** �1.68 0.009 0.000 �2.11 �0.008 �1.66
PBE/aug-cc-pVDZ �1.50 0.011 0.000 �1.96 �0.008 �1.48
PBE/aug-cc-pVTZ �1.72 0.010 0.000 �2.15 �0.007 �1.71
XD/PBE/6-31G** �2.00 0.007 �0.001 �2.45 �0.003 �1.99
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4.2. EF in the crystal structure of formamide from theoretical

data

Note that, for an isolated molecule, the electric field at each

nuclear position in the solid state must be zero once equi-

librium is established. However, the molecules ‘extracted’

from the crystal are not at equilibrium, therefore any calcu-

lation of the isolated molecule with the crystal geometry

results in significant electric forces acting on the nuclei. These

forces should be ‘compensated’ in the crystal by those of the

environment generated by the packing (of course after a final

relaxation of the molecular electron density).

Fig. 1 shows the projection of the electric field in the O—

C—N plane of the ‘central’ formamide molecule due to the

eight nearest-neighbor molecules as found in the crystal

structure of formamide. The electric field was plotted with the

program PlotMTV (Toh, 1995a) using the MTV plot data

format (Toh, 1995b). The contribution of the ‘central’ mol-

ecule to the electric field is omitted. In general, the external

electric field is directed from the ‘negative’ part of the central

molecule (i.e. the O atom) towards the ‘positive’ end (the

amino group), and has nearly the same direction as the dipole

moment of formamide. Indeed, molecules in crystals tend to

orient themselves so as to achieve electrostatic stabilization.

By the same token, the external electric field tends to polarize

the central molecule so as to increase its dipole moment and

enhance this electrostatic stabilization. Our own fully periodic

(Saunders et al., 1998; Gatti, 1999) calculations at the B3LYP/

6-31G** level of theory (Becke, 1988; Lee et al., 1988; Miehlich

et al., 1989; Becke, 1993) show that the molecular dipole

moment of formamide is increased to approximately

5.5 Debye in the solid state from about 4 Debye for the free

molecule in the crystal geometry.

4.3. Determination of the 57Fem nuclear quadrupole moment

from experimental X-ray data

The nuclear quadrupole moment Q(57Fem) cannot be

directly measured because of the short lifetime of the excited

nuclear state. However, Q(57Fem) is directly related to the

Mössbauer quadrupole splitting �EQ:

�EQ ¼ 1
2 eQð57FemÞVzz 1þ 	

2

3

� �1=2

; ð51Þ

where e is the elementary charge, Vzz is the largest eigenvalue

of the traceless EFG tensor

jVzzj> jVyyj> jVxxj ð52Þ
and 	 is the asymmetry parameter defined as

	 ¼ Vxx � Vyy

Vzz

: ð53Þ

In order to obtain the three principal components of the EFG

tensor defined by expression (5), the tensor must first be

converted to its traceless form and then diagonalized. Note

that �EQ and Q(57Fem) are usually given in Doppler-speed

units of mm s�1 and m2, respectively, while the EFG tensor

components are usually reported in e Å�3 or atomic units. The

conversion between diffraction and spectroscopic units is

discussed in detail by Coppens (1997, pp. 223–224).
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Figure 1
EF vectors in the N2—C3—O1 plane of the ‘central’ formamide molecule
due to the eight nearest neighbors in the crystal (the contribution of the
‘central’ molecule to EF is not included). Subscripts of atom names
identify the neighboring molecules. Vectors with magnitudes larger than
0.15 e Å�2 are omitted for clarity. The size of the map is 6 � 6 Å with a
grid spacing of 0.2 Å.

Table 5
Eigenvalues of the EFG tensor at the nuclear positions in formamide
(atomic units) from different methods.

�1 �2 �3

O(1)
PBE/6-31G** �1217 �1216 �1214
PBE/aug-cc-pVDZ �1247 �1246 �1244
PBE/aug-cc-pVTZ �1249 �1249 �1246
XD/PBE/6-31G** �1306 �1306 �1305

N(2)
PBE/6-31G** �798 �798 �797
PBE/aug-cc-pVDZ �819 �819 �818
PBE/aug-cc-pVTZ �821 �821 �819
XD/PBE/6-31G** �864 �863 �863

C(3)
PBE/6-31G** �493 �492 �492
PBE/aug-cc-pVDZ �506 �505 �505
PBE/aug-cc-pVTZ �507 �507 �507
XD/PBE/6-31G** �535 �534 �534

H(4)
PBE/6-31G** �2.16 �1.57 �1.49
PBE/aug-cc-pVDZ �2.04 �1.45 �1.38
PBE/aug-cc-pVTZ �2.21 �1.62 �1.55
XD/PBE/6-31G** �2.50 �1.88 �1.82

H(5)
PBE/6-31G** �2.11 �1.54 �1.47
PBE/aug-cc-pVDZ �2.00 �1.42 �1.37
PBE/aug-cc-pVTZ �2.17 �1.59 �1.53
XD/PBE/6-31G** �2.46 �1.87 �1.82

H(6)
PBE/6-31G** �2.11 �1.68 �1.66
PBE/aug-cc-pVDZ �1.96 �1.50 �1.48
PBE/aug-cc-pVTZ �2.15 �1.72 �1.71
XD/PBE/6-31G** �2.45 �2.00 �1.99
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Experimental X-ray data for iron pentacarbonyl Fe(CO)5

were taken from the recent low-temperature (100 K) study of

Farrugia & Evans (2005). Following the procedure of Su &

Coppens (1996), the EFG tensor at the Fe nucleus is parti-

tioned into its peripheral E
peripheral
�� and central Ecentral

�� contri-

butions:

E��ðrÞ ¼ Ecentral
�� ðrÞ þ E

peripheral
�� ðrÞ: ð54Þ

The central component Ecentral
�� includes only the contribution

of the Fe pseudoatom, while the peripheral component

E
peripheral
�� includes both electronic and nuclear contributions of

all other atoms. Because the Hansen–Coppens pseudoatom

formalism uses a flexible valence shell but assumes a frozen

core configuration, it is important to include the Sternheimer

functions (Sternheimer, 1986) 
core
1 and Rcore in order to

properly describe the shielding/antishielding of the EFG at the

nuclear position due to the polarization induced in the atomic

density by the quadrupolar components of the density distri-

bution (Su & Coppens, 1996). Sternheimer functions are

therefore included in expression (54) as

E��ðrÞ ¼ Ecentral
�� ðrÞð1� RcoreÞ þ E

peripheral
�� ðrÞð1� 
core

1 Þ: ð55Þ

Values of Rcore = 0.0730 and 
core
1 = �8.933 as derived by Su &

Coppens (1996) for the neutral Fe atom are used in the

present study.

The recent experimental value of �EQ = +2.51 mm s�1 in

Fe(CO)5 was taken as the reference. This value agrees very

well with the theoretical value of 2.54 mm s�1 obtained from

density-functional (B3LYP) calculations performed on the

gas-phase optimized geometry of Fe(CO)5 (Halvin et al., 1998;

Zhang et al., 2002). The reference value gives Q(57Fem) =

0.11 � 10�28 m2 without Sternheimer correction and

0.12 � 10�28 m2 after taking into account shielding/anti-

shielding effects of the core. These values agree very well with

those previously reported by Su & Coppens for iron pyrite

FeS2, sodium nitroprusside Na2[Fe(NO)(CN)5]	2H2O and

Fe(TPP)(pyridyl)2, but slightly smaller than the earlier value

of 0.14 (2) � 10�28 m2 determined (omitting shielding/anti-

shielding effects of the core) by Tsirel’son et al. (1987), based

on studies of sodium nitroprusside and Fe2O3. By averaging

over three compounds, Su & Coppens obtained values of

Q(57Fem) = 0.09–0.10 � 10�28 m2 and 0.11–0.12 � 10�28 m2

from uncorrected and corrected calculations, respectively.

When our value is included in the average, the mean corrected

value of Q(57Fem) becomes 0.12 � 10�28 m2 with a standard

uncertainty of 0.02. It is within three standard uncertainties of

the most precise up-to-date determination of Q(57Fem) =

0.16 � 5% � 10�28 m2 reported by Dufek et al. (1995) based

on the comparison of spectroscopic values with EFG’s from

linearized augmented-plane-wave (LAPW) theoretical densi-

ties on a series of solids. It is interesting to note that all four

recent experimental X-ray charge-density studies consistently

show lower values of Q(57Fem) than combined theoretical/

spectroscopic studies. This discrepancy merits further study.

5. Concluding remarks

New practical formulae for calculation of the electrostatic

potential (ESP), electric field (EF) and the electric field

gradient (EFG) from the aspherical pseudoatom model are

presented, which allow computation in regions near the

nuclear centers. As real spherical harmonic density functions

dlm�ð�Þ are discontinuous at the origin and thus non-differ-

entiable, direct implementation of expressions containing

dlm�ð�ÞIðn; l; �rÞ in the evaluation of the electrostatic

potential and its derivatives in this region is not possible.

Instead the expressions have been reformulated in the form

½dlm�ð�Þrl�½r�lIðn; l; �rÞ�, which eliminates this problem.

Special care is required when treating the integral r�lIðn; l; �rÞ
when n = l or n = l + 1.

The expressions are applied to a theoretical density of

formamide and to the derivation of the 57Fem nuclear quad-

rupolar moment from experimental X-ray diffraction data. For

formamide, the ESP, EF and EFG at the nuclear positions,

calculated with the new expressions and a projection of PBE/

6-31G** densities onto the Hansen�Coppens pseudoatom

model, agree very well with theoretical values calculated

directly from the wavefunction. Small differences observed

are attributed to the different behavior of Slater- and Gaus-

sian-type functions as r! 0 and to imperfections in the fitting

procedure.

The new expressions have further been applied in the

detailed visualization of the electric field exerted on the

‘central’ formamide molecule by the crystal environment. This

was simulated by the electric fields of the eight closest

neighboring molecules and omitting the contribution of the

‘central’ molecule. The direction of the EF in the central

molecule almost exactly coincides with the direction of the

molecular dipole moment of the formamide molecule before

its incorporation into the crystal, demonstrating the impor-

tance of the electrostatic forces in determining the crystal

packing. The coincidence of the dipole moment and electric

field directions provides a direct explanation for the

enhancement of molecular dipole moments in crystals in

accord with results of numerous experimental and theoretical

studies.

Determination of the nuclear quadrupole moment of iron

from the experimental X-ray diffraction data of Fe(CO)5

yields a value of Q(57Fem) = 0.12 � 10�28 m2, after taking into

account shielding/antishielding effects of the core, which is in

excellent agreement with previous X-ray studies by Su &

Coppens (1996). However, this value is slightly smaller than

the generally accepted value of 0.16 � 5% � 10�28 m2

obtained from combined theoretical/spectroscopic studies

(Dufek et al., 1995). The fact that X-ray determinations of

Q(57Fem) using different crystals and data sets consistently

yield slightly lower values than those obtained from theor-

etical and spectroscopic studies requires further examination.

Note that the formulae presented for calculation of the ESP

have already been used in our previous studies on the calcu-

lation of the electrostatic interaction energies in molecular

crystals (Volkov et al., 2004, 2006). Numerical quadrature
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evaluation of the two-centered Coulomb integral in the exact

potential and multipole moment (EPMM) method requires an

accurate yet efficient evaluation of the ESP at any r.

Application of the new method to topological analysis of

the ESP, as recently performed by Bouhmaida et al. (2002), is

currently being pursued.
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Orlando, R. & Zicovich-Wilson, C. M. (1998). CRYSTAL98 User’s
Manual, University of Torino, Italy.

Schwarzenbach, D. & Thong, N. (1979). Acta Cryst. A35, 652–658.
Slater, J. C. (1932). Phys. Rev. 42, 33–43.
Sternheimer, R. M. (1986). Z. Naturforsch. Teil A, 41, 24–36.
Stevens, E. D. (1978). Acta Cryst. B34, 544–551.
Stewart, R. F. (1979). Chem. Phys. Lett. 65, 335–342.
Stewart, R. F., Spackman, M. A. & Flensburg, C. (1998). VALRAY98,

Users Manual, Carnegie Mellon University, Pittsburgh, PA, USA,
and University of Copenhagen, Denmark.

Su, Z. & Coppens, P. (1992). Acta Cryst. A48, 188–197.
Su, Z. & Coppens, P. (1996). Acta Cryst. A52, 748–756.
Toh, K. K. H. (1995a). PlotMTV – Fast Multi-Purpose Plotting

Program for X11-Windows.
Toh, K. K. H. (1995b). MTV Plot Data Format, Version 1.4.1, Rev. 0.
Tsirel’son, V. G., Strel’tsov, V. A., Makarov, E. F. & Ozerov, R. P.

(1987). Sov. Phys. JETP, 65, 1065–1069.
Velde, B. te (1990). BAND – a Fortran Program for Band Structure

Calculations. PhD thesis, Vrije Universiteit, Amsterdam, The
Netherlands.

Velde, B. te, Bickelhaupt, F. M., van Gisbergen, S. J. A., Fonseca
Guerra, C., Baerends, E. J., Snijders, J. G. & Ziegler, T. J. (2001). J.
Comput. Chem. 22, 931–967.

Volkov, A., King, H. F. & Coppens, P. (2006). J. Chem. Theory
Comput. 2, 81–89.

Volkov, A., Koritsanszky T. S. & Coppens, P. (2004). Chem. Phys. Lett.
391, 170–175.

Zhang, Y., Mao, J., Godbout, N. & Oldfield, E. (2002). J. Am. Chem.
Soc. 124, 13921–13930.

research papers

408 Anatoliy Volkov et al. � Aspherical pseudoatom model Acta Cryst. (2006). A62, 400–408

Table 6
Cartesian coordinates (Å) of the atoms in formamide used in all
calculations.

Atom x y z

O(1) �1.1985900 �0.2390700 0.0036000
N(2) 1.0736400 �0.1651500 �0.0015000
C(3) �0.1305900 0.3877800 �0.0088500
H(4) 1.8732000 0.4369500 0.0209100
H(5) 1.1409300 �1.1690400 0.0014700
H(6) �0.1574100 1.4741700 0.0124500
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