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A new analysis method for the short excited-state lifetime measurement of
photosensitive species in crystals is described. Based on photocrystallographic
techniques, this method is an alternative to spectroscopic methods and is also
valid for non-luminescent excited species. Two different approaches are
described depending on the magnitude of the lifetime 7. For very short lifetimes
below the width of the synchrotron pulse, an estimated 7 can be obtained from
the occurrence of the maximal system response as a function of the pump—probe
delay time At. More precise estimates for both short and longer lifetimes can be
achieved by a refinement of a model of the response as a function of the pump—
probe delay time. The method also offers the possibility of the structure

determination of excited species with lifetimes in the 40-100 ps range.
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1. Introduction

Time-resolved photocrystallography allows the collection of
dynamic structural information not accessible by other
methods. By means of a pump-probe technique, it involves
the measurement of light-ON and light-OFF data which are
subsequently analyzed to determine time-dependent struc-
tural changes following light exposure. The theoretical aspects
of ultrafast time-resolved monochromatic X-ray and electron
scattering of gas-phase samples have been treated in the 1990s
(Ben-Nun et al, 1997, Cao & Wilson, 1998). The time
dependence of the X-ray response to photo-exposure of solids
is treated below. To allow single-pulse diffraction it is
imperative to use the polychromatic Laue technique, which
makes much more efficient use of the photon flux of the source
(Makal et al., 2011). To eliminate the wavelength dependence
of the diffraction intensities, of the detector response and of
other effects, we have introduced the RATIO method for
analysis of time-resolved Laue data (Coppens et al., 2009).
With a judicious choice of pump—probe delays such that the
laser pulse starts close to or after the start of the X-ray pulse,
and thus overlaps with the latter, it is possible to improve the
time-resolution below the ~100 ps limit of the synchrotron
source. Haldrup et al. (2011) have measured the excitation
fraction as a function of time for a species with a longer 420 ns
lifetime in solution. We show here that a scan of the light
response as a function of the pump—probe delay can be used
for the estimate of lifetimes down to ~50 ps without knowl-
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2. Derivation of equations
2.1. Experimental measurements of system response

The relative intensity response to light exposure is defined
by the response ratio
I}(])N _ I}(])FF

h=""jorF = RN -1, ®
h

with R, the intensity ratio for the reflection h.

We consider here the case of a single pulse without cumu-
lative pumping in which the exposed species has only two
possible states: a ground state (GS) and an excited state (ES).
The latter occurs when the excitation is still significant at the
time of arrival of the following laser pulse, as discussed by
Fullagar et al. (2000). Laser exposure can be interpreted as an
energy transfer and therefore, ¢, ,, the instantaneous pump
laser beam intensity, as an instantaneous energy or power
(mW). The instantaneous laser exposure at f, i ... €Xcites a
fraction of sample. According to first-order kinetics, this
fraction p decays as an exponential function and is given by
the following. For t > ¢

— ‘reference >

p(treference s t) = PoClaser (treference) exp [_( t— treference)/t] ’ (2)
in which p,, is the exposure fraction of excited species per laser
beam energy unit at £, e in units of mJ .

At an instant ¢, the total fraction P(t) of excited species

edge of the structure of the excited species. In favorable cases results from instantaneously excited species (Z,qgerence = £) DUt
it should also be possible to determine the structures of  also all remains of earlier excitations (f,eprence < )- P(f) is
species with such short lifetimes. obtained by integrating p as a function of #,.;.;cnces

J. Synchrotron Rad. (2012). 19 doi:10.1107/50909049512010710 1 Of 6


http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5035&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5035&bbid=BB12

research papers

t

Piy= [

1,

Po Claser (treference)
00

reference =

X exp[—(t - treference)/T] dlreference' (3)

The total fraction P is the convolution product of the instan-
taneous laser beam intensity e, and the instantaneous
exposure response per laser beam energy unit with ... set
to zero.

For any reflection h, the laser-ON intensity, diffracted by the
sample when exposed to the laser light at time ¢, iQP™(¢),
depends on the X-ray beam intensity at that instant e, (f) and
the excited molecule fraction P(¢). The instantaneous intensity
iPN(t) depends on the nature of the excited-state species
distribution in the sample (Vorontsov & Coppens, 2005).

In the case of an excited-state cluster formation (CF),

WO = equOKFE PO + kST - PO} @)

Here F;° and FJ® are the ES and GS structure factors,
respectively, for the structure factor, and k is a factor which
depends on the volume of the crystal, the optical correction
factors and the experimental details.

In the case of a random distribution of the excited-state
molecules (RD), which is more commonly encountered,

R 2
() = eyay (DK[FLP(1) + FPS[1 — P(0)]| Q)
which can be rewritten as
. 2 2
iV (1) = ey (D[ |FRS — FJS|"P(1)” + |FS|
+2P()(F,° — F°) - F]. (6)

Assuming small values of the conversion fraction P(¢), which is
typically the case in many experiments in which the integrity
of the crystal is preserved, we neglect the terms in P(t) to give

N0 2 ey OK] [FPS[ + 2P0 - %) - FE ] ()

The total intensity /PN (units mJ) is obtained by integration of
the instantaneous intensity iQN over ¢,

+o00
N = [ idN@)de 8)
=—00
If we replace iP™(¢) by equations (4) for CF or (7) for RD and
combine the terms with P(¢), we obtain IPY as the summation
of two integrals,

+00 +00 2
LN = [ euyOLPOdE + [ e (DKIF®| dr, (9)
1=—00
with, in the CF case, L, = k([FES|" — [FS5|)) and, in
the RD case with small conversion percentages, L, =
KFJS - (FpS — Fy®).

If we assume no variation of thermal effects, the second
term of equation (9) corresponds to IPfF, the laser-OFF
intensity of the reflection h. This approximation is valid for
single or few-pulse experiments, which are required for the
method described here. The equation can be rewritten as

1=—00

I](])N _ I]?FF +o00
=" = Hy, [ en,(OP@)dr, (10)
h t=—00

with H,, a characteristic factor of h defined as H,, = L, /IP™".
We note that the factor H, can be positive or negative
depending on the values of F£° and F\S and is different for the
CF and RD cases.
Substituting the expression for P(f) [equation (3)], n,
becomes

1=—00 o0

+0o0 t
’71. = Hh f exray (Z) f elascr(trcfcrcncc)

Ireference =
X exXp|—(t — tieterence)/ T | Areterence ( At 11
P reference reference

By interchanging integrals, n, can be rewritten as

+o00

h = Hh‘f / LZX/T) |: :F/‘OO exray(t)elaser(t - X) d[i|dx

x=0

(12)

The term between the square brackets is the cross-correlation
of the pump and probe pulses. This equation is similar to that
obtained by Cerullo et al (2007) for the pump-induced
variation of the probe energy in time-resolved absorption
spectroscopy. If the instantaneous laser and X-ray pulse
intensities ey, and e, are modeled with time-dependent
Gaussian functions with respective maxima epg, and eg, at
times 4, and #,,,, and oy, and o,,,, the Gaussian functions’

standard deviations, n, becomes

T ex (—x/7) [exp{—(x — 81)*/20% }
n, = Kyt / P ( P M )dx ,

T (2m )1/2UM

x=0

(13)
where 8t = £,y — faer» the pump-probe delay time, and
O = Onray + Olnger are the parameters of the Gaussian cross-
correlation function of the pump and probe pulses. K, equals
PoCxray€haser Hy- Thus 3¢ is negative when the X-ray maximum
preceeds that of the laser pulse and vice versa.

The factor between square brackets can be interpreted as
the convolution product of a normalized exponential decay
function (7; f,ference = 0) and a Gaussian function (i = 0; o =
oy)- Such a convolution product is known as an exponentially
modified Gaussian function, used in chromatography for
asymmetric peak fitting (Lan & Jorgenson, 2001), in theore-
tical biology for cell proliferation and differentiation curve
fitting (Golubev, 2010) and by Gawelda et al. (2007) in pico-

second X-ray absorption spectroscopy of solutions.

2.2. Infinitely sharp laser pulse approximation of the #,
model

The beam pulse lengths can be defined by their half-
maximum intensity time windows (FWHM), labelled At,
during which e(r) > e™*/2. The o value is related to the
FWHM by o = At/2.355.
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We obtain, for the ratio of width At of the two functions,

2
(Atxray /Atlaser) = U)%ray /Ulzaser’ (14)

A Atratio larger than ~3.2 corresponds to a o ratio of ~10.0.
For larger ratios, oy, can be approximated by o,,,,, which is
equivalent to modeling the laser beam pulse profile with a §

function.

2.3. Exponential decay limit of the 7, model

When the ES lifetime t significantly exceeds the laser and
X-ray beam widths the limiting case is reached in which the 7,
function in equation (12) approaches an exponential decay
function as shown in the following.

M, can be rewritten as

+o0

_ Ky 2 —dt O
nh _7_[1/2 / exp( y )dy eXp|: T (1 ZT(St .

9 )
=)

(15)

In the case that oy = (02, + 02,)"" < 8 and < 7, the

xray

integral limits become 400 and —o0, and

m, — K, exp(—dt/7). (16)

3. Dependence of the #, response profile on the time
parameters

3.1. Normalized 7, function, 7,

The n,, profile depends on four time parameters: Oy,g;, Oyrays
T and &t As in equation (15), all variables are in ratios of
parameters; multiplying each by a positive factor does not
change the 5, profiles. Thus, the time parameters can be
converted to be dimensionless values by division by
oy = (0hger + Gfmy)'/ ?_ This way all 5, results are valid inde-
pendent of the absolute time scale,

Olaser UXfay T 8t
nh(Ulascr’ axray’ T, <SI) = nh( ’ [ASUREE RS N (17)
Om Om Om Owm

Similarly, we introduce a relative lifetime ™% and a relative
delay time 8¢ defined as

prelative _ /oy and Sprelative — ot/oy. (18)

With typical experimental values for the beam pulse and laser
windows A, and A, such as Ag,,, =30ps and
Aty =100 ps, we get O, = 12.7 ps and oy, = 42.5 ps,
which leads to oy, = 43.3 ps. According to (17), n, becomes a
function of the relative lifetime ™% and delay time §

with o553 = 0.982 and ojsa™ = 0.293. K, is specific for each
reflection h and can be positive or negative. In the following
we normalize 7, by dividing by K,. This means that the
normalized 7y, referred to as 7),, is always positive.

trelative

3.2. Plotting the 7, function

The expression of 7, (13) does not have an analytical
solution. However, it can be evaluated by using an approx-
imation of the Gaussian error function, erf,

.1 | et 1 (oy &t . —8t ) o
=-1{1- — = —— xp|l—(1—=—-]].
=3 AT P77 2ust

(19)

Several approximations of erf are given by Abramowitz &
Stegun (1972). The approximation used in this work, which
has been coded in Python, has a maximum error of 1.5 x 107’
and is described in Appendix A.

Figs. 1(a) and 1(b) show #j, for t™Rive and §latve intervals
of [0; Soy] and [—2.50y; S0y, ] and illustrate the increase of the
f), maximum intensity with t""¢ and the T dependence of 7,
profile skewness as a function of §72"¢_ respectively. These 7,
profiles are observed for very short positive and negative
delay times when the pump and probe pulses overlap (Fig. 2a).

relative
h

0.6
0.5
0.4
0.3
0.2

0.1
0.0

Iy LR
A LR
Ry

6trclativc 2 3

nrelative
T

0.6
0.5
0.4
0.3
0.2
0.1
0.0

A LT
e L,
R e e e S o,

L

R o L e 4
Rl
RS
2

: 3
Trelatlve 4

Figure 1
Three-dimensional plot of N, as a function of the relative delay time
srelative — §¢ /gy and the relative lifetime ™% = t/0y,.

J. Synchrotron Rad. (2012). 19

Fournier and Coppens + Picosecond lifetime estimation 3 of 6



research papers

(a) 5trelative =-1 6trelative =0

Lof  gprelative - 1.0
1 ]
1 I
o8 A ! o8
0 ) h 0
o ¢ @
= 0.6 1 | = 06
£ Y £
1
[} [}
904 o B Yoa
=] N =
o ' | o
0.2 o 0.2
1 I
1 I
. .
s ==-1 01 2 3 45 S 7101 2 3 4 5
time time
relative — relative —
t +1 t +2
1.0 1.0
208 o8
2 2
Yos Yo
c £
[} [}
Qo4 V04
3 =
o o
0.2 0.2
52101 2 3 a5 03 =Z1 01 2 3 4 5
time time
(®) o7
T
0.6
0.5
0.4
0.3
0.2
0.1
083 =2 -1 0 1 2 3 4 5
b‘trelat,we
Figure 2

Plots of pump-probe signals for different relative delay times
selative — §¢/gn (a) and of 7, as a function of 8% for different
relative lifetimes "¢ = t/a,, (b). In (a) the grey curves (green online)
represent the laser pump pulse and the black curves (blue online) the
X-ray probe pulse. In () the full curves represent the original 7, model,
and the dashed ones the approximated oy, > o,,,, model. The parameter

xray
op = (Oger + afray)l/ % is ~40 ps in our experiments. The parameter 8t is
the delay time between laser pump and X-ray pump pulse maxima.

Fig. 2(b) shows that the profile asymmetry becomes more
significant as T increases.

The 7, values for the approximation oy = o, are also
plotted in Fig. 2(b). The model profiles differ somewhat near
their maxima. However, in both cases the maximal intensity
is reached at almost the same time point 824" even for

max
large Trelative

4. Methods for estimating

To assure sufficient precision of the results the estimate of the
excited-state lifetimes 7 will require closely spaced sampling of
ot for each of the frames collected and repeated measure-

ments. As single pulse measurements are very rapid, this is
entirely feasible.

Depending on the relative lifetime ™" (= t/0y,), two
different strategies can be used. From a mathematical point of
view the 71, model is valid for any reflection. Nevertheless, in
practice, reflections h for which absolute |n,/0, | values are
large should be selected in order to optimize the precision of 7.

4.1. Quick estimation of  based on the position of the
maximum

relative

For each reflection used, a T estimate can be deduced
from the position of the 7, maximum.

The derivative of 7, [equation (13)] as a function of 8t
can be expressed by interchanging the derivation and inte-
gration operators as

dﬁh relative 1 ~ relative
d(strclativc (81 ) == Trclalivc nh(gt )
5trelativez

When §frelative — 6trelative’ dﬁh(8trelative)/d6trelative — 0 and at this

max max
point the 7, (8£13%¢) value becomes

max

i i 1 _Strelalivez
~ St ativey __ e ative ex max ) 21
nh( max ) (27_[)1 /2 P 2 ( )

Knowing d¢,,,., T can be refined to satisfy equation (21) (Fig. 3).
We introduce the function f, which relates §frelative o grelative,
This function cannot be evaluated analytically, but can be
approximated as f as described in Appendix B. Its standard
deviation can be obtained from the distribution of the gratve
estimates from the individual reflections.

The relative uncertainty in T o e /T is related
to the relative uncertainty in §felaive, Ogprtaiive / 81, as
explained in Appendix B.

Fig. 4 shows that the ratio of the relative uncertainties in
rrelative and §rrlatve ratio,, plotted as a function of §ffelative,

max

relative
max >

10 |
7_relatlve

8

0 T
0 0.5 1

=gt
Figure 3

Plot of the relative lifetime 7 = t/oy as a function of the relative
delay time §reltive — §¢ /oy, with 8, the instant at which 7, is
maximal. The black line (blue online) corresponds to the original 7,
model, and the grey line (orange online) to the approximated oy 2 Oy
model.

relative
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relative

Plot of ratio,, the ratio of the relative uncertainties in 7
sprelatve — gy /ow, With 8, the instant at which 7, is maximal. ratio,, is
drawn as a function of §#<l2"¥¢, The corresponding t™!*"*¢ values are also
given on the x axis. The orange dotted line corresponds to the constant

function ratio, = 1.

= t/oy and

increases  with ~ §felative  and

max
O etive /TN > Ggpeiine /81103, Tt follows from the ratio,
profile that the uncertainties are different for short- and long-
lifetime 7. Thus the uncertainties in "¢ increase with
Strelative - A more precise estimate can be obtained by refine-

ment of a model of the system response as a function of §¢elative
as described in the following section.

ratio, (§fcltivey > 1 or

4.2. Least-squares fitting of the #, function

A more precise procedure is to perform a global least-
squares (LS) fitting of the n, model against the full set of 7,
values collected for N, different reflections with different 8z,
with, as variables, t plus N, multiplicative factors K, (one per
reflection). The minimized LS error function ¢ will be

measures mode. 2
&= Ehwh{zi\g'l ['7h 4(51,) — np I(Sti)] } (22)

If intensities are collected with a significant redundancy,
a weighting scheme can be introduced using Oypenn 1O
give wy, = 1/07nean.

Finally, if the preliminary plots of n, values as a function of
8t reveal a monotonic decreasing of n,, the LS fitting can be
based on the simple exponential decay of 1,

5. Conclusions and perspectives

The measurement of an excited-state lifetime using photo-
crystallographic techniques is an alternative to spectroscopic
methods for subnanosecond lifetimes, provided sufficient
precision is achieved by repeated measurement if necessary.
Furthermore, it allows the measurement of lifetimes of non-
luminescent excited states, which is of importance when the
emission is quenched by non-radiative processes. In all cases it
is necessary to closely sample §t.

APPENDIX A
Approximation of erf

The approximation of erf used in this work is defined as

X

2
erf(x) = —7 [ exp(—y*)dy

y=0
~ sign(x)[l — (ayt + a,f* + a;f
+aytt +ast) exp(—xz)] (23)
where
1
t=———
1+ plx|

with p = 0.3275911, a; = 0.254829592, a, = —0.284496736, a; =
1.421413741 a, = —1.453152027, a5 = 1.061405429.

APPENDIX B
Approximation of 7 as a function of dt,,,

In §4.1 we introduce a quick estimation method of rrelative
based on the 8l2¥¢ estimate. The function f which gives, for
each 8114 the corresponding T is unknown. However,
some characteristics of f can be obtained.

relative
max

B1. Asymptotic behavior of f

The following relation between ™! and §7l3ive can be
deduced from equations (15) and (21),

+00 .
S exp(—y)dy [ exp(U%) = T2, (24)

y=U

with U = (1/21/2) (1/Trelative _ 8trelative).

max

The asymptotic behaviors of f at +o0o and at 0" (the posi-
tive side of 0) can be deduced from this expression (see
supplementary material").

max

_L,relative +,\,oo (27T)1/26Xp (StrelativeZ/ 2) (25)
and

.L.relalive > Strelalive' (26)

max

B2. Approximation function f

Taking into account the asymptotic behaviors of f, an
approximation can be defined as
(Strelativez
]?(Strclatiw:) — (27.’:)1/2 exp max

max 2

5 t:::&tive exp (_ S t::i&tive ) )
(27_[) 1/2

27)

f and f share the same asymptotic behaviors. The absolute
error remains reasonable, even for large relative For instance,

! Supplementary data for this paper are available from the TUCr electronic
archives (Reference: VV5035). Services for accessing these data are described
at the back of the journal.
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for sfehive — 265 £(2.65) = 80, while F(2.65)~ 80.7. For
all §relative e 10; 400, the relative error of T2 is smaller

max

than 4%.

B3. Ratio of relative uncertainties ratio,

According to the propagation of errors, the approximate
uncertainty in 8£¢13% is related to the uncertainty in T as

max

follows, where f’ is the derivative of f,
O relative = |f/(8lrsl§ive)|0'5,rn§€1&tive, (28)
which gives, for the relative uncertainties,

7 ( S4relative relative .
O prelative |f (Stmax )}&‘max O gyrelative

prelative f(atleg(live) 5[;615(&"6 ' (29)
We define the function ratio, for 814 € 10, +o00[ as
. O relative .L,relalive / (Stre.lative 8trelative

ratio, (3raise) = T/ _ IO st (30)

o relative
O—St“.;é‘}““ /(Stmax f(étmax
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