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A new analysis method for the short excited-state lifetime measurement of

photosensitive species in crystals is described. Based on photocrystallographic

techniques, this method is an alternative to spectroscopic methods and is also

valid for non-luminescent excited species. Two different approaches are

described depending on the magnitude of the lifetime �. For very short lifetimes

below the width of the synchrotron pulse, an estimated � can be obtained from

the occurrence of the maximal system response as a function of the pump–probe

delay time �t. More precise estimates for both short and longer lifetimes can be

achieved by a refinement of a model of the response as a function of the pump–

probe delay time. The method also offers the possibility of the structure

determination of excited species with lifetimes in the 40–100 ps range.
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1. Introduction

Time-resolved photocrystallography allows the collection of

dynamic structural information not accessible by other

methods. By means of a pump–probe technique, it involves

the measurement of light-ON and light-OFF data which are

subsequently analyzed to determine time-dependent struc-

tural changes following light exposure. The theoretical aspects

of ultrafast time-resolved monochromatic X-ray and electron

scattering of gas-phase samples have been treated in the 1990s

(Ben-Nun et al., 1997; Cao & Wilson, 1998). The time

dependence of the X-ray response to photo-exposure of solids

is treated below. To allow single-pulse diffraction it is

imperative to use the polychromatic Laue technique, which

makes much more efficient use of the photon flux of the source

(Makal et al., 2011). To eliminate the wavelength dependence

of the diffraction intensities, of the detector response and of

other effects, we have introduced the RATIO method for

analysis of time-resolved Laue data (Coppens et al., 2009).

With a judicious choice of pump–probe delays such that the

laser pulse starts close to or after the start of the X-ray pulse,

and thus overlaps with the latter, it is possible to improve the

time-resolution below the �100 ps limit of the synchrotron

source. Haldrup et al. (2011) have measured the excitation

fraction as a function of time for a species with a longer 420 ns

lifetime in solution. We show here that a scan of the light

response as a function of the pump–probe delay can be used

for the estimate of lifetimes down to �50 ps without knowl-

edge of the structure of the excited species. In favorable cases

it should also be possible to determine the structures of

species with such short lifetimes.

2. Derivation of equations

2.1. Experimental measurements of system response

The relative intensity response to light exposure is defined

by the response ratio

�h ¼
ION

h � IOFF
h

IOFF
h

¼ R
ON=OFF
h � 1; ð1Þ

with Rh the intensity ratio for the reflection h.

We consider here the case of a single pulse without cumu-

lative pumping in which the exposed species has only two

possible states: a ground state (GS) and an excited state (ES).

The latter occurs when the excitation is still significant at the

time of arrival of the following laser pulse, as discussed by

Fullagar et al. (2000). Laser exposure can be interpreted as an

energy transfer and therefore, elaser, the instantaneous pump

laser beam intensity, as an instantaneous energy or power

(mW). The instantaneous laser exposure at treference excites a

fraction of sample. According to first-order kinetics, this

fraction p decays as an exponential function and is given by

the following. For t � treference ,

pðtreference; tÞ ¼ p0elaserðtreferenceÞ exp �ð t � treferenceÞ=�
� �

; ð2Þ

in which p0 is the exposure fraction of excited species per laser

beam energy unit at treference in units of mJ�1.

At an instant t, the total fraction PðtÞ of excited species

results from instantaneously excited species (treference ¼ t) but

also all remains of earlier excitations (treference < t). PðtÞ is

obtained by integrating p as a function of treference,
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PðtÞ ¼
Rt

treference¼�1

p0 elaserðtreferenceÞ

� exp �ðt � treferenceÞ=�
� �

dtreference: ð3Þ

The total fraction P is the convolution product of the instan-

taneous laser beam intensity elaser and the instantaneous

exposure response per laser beam energy unit with treference set

to zero.

For any reflection h, the laser-ON intensity, diffracted by the

sample when exposed to the laser light at time t, iON
h ðtÞ,

depends on the X-ray beam intensity at that instant exrayðtÞ and

the excited molecule fraction PðtÞ. The instantaneous intensity

iON
h ðtÞ depends on the nature of the excited-state species

distribution in the sample (Vorontsov & Coppens, 2005).

In the case of an excited-state cluster formation (CF),

iON
h ðtÞ ¼ exrayðtÞ k FES

h

�� ��2PðtÞ þ k FGS
h

�� ��2½1� PðtÞ�
n o

: ð4Þ

Here FES
h and FGS

h are the ES and GS structure factors,

respectively, for the structure factor, and k is a factor which

depends on the volume of the crystal, the optical correction

factors and the experimental details.

In the case of a random distribution of the excited-state

molecules (RD), which is more commonly encountered,

iON
h ðtÞ ¼ exrayðtÞk FES

h PðtÞ þ FGS
h ½1� PðtÞ�

�� ��2 ð5Þ

which can be rewritten as

iON
h ðtÞ ¼ exrayðtÞk

�
FES

h � FGS
h

�� ��2PðtÞ
2
þ FGS

h

�� ��2
þ 2PðtÞðFES

h � FGS
h Þ � F

GS
h

�
: ð6Þ

Assuming small values of the conversion fraction PðtÞ, which is

typically the case in many experiments in which the integrity

of the crystal is preserved, we neglect the terms in PðtÞ
2 to give

iON
h ðtÞ ’ exrayðtÞk FGS

h

�� ��2 þ 2PðtÞðFES
h � FGS

h Þ � F
GS
h

h i
: ð7Þ

The total intensity ION
h (units mJ) is obtained by integration of

the instantaneous intensity iON
h over t,

ION
h ¼

Rþ1
t¼�1

iON
h ðtÞ dt: ð8Þ

If we replace iON
h ðtÞ by equations (4) for CF or (7) for RD and

combine the terms with PðtÞ, we obtain ION
h as the summation

of two integrals,

ION
h ¼

Rþ1
t¼�1

exrayðtÞLhPðtÞ dt þ
Rþ1

t¼�1

exrayðtÞkjF
GS
h j

2
dt; ð9Þ

with, in the CF case, Lh ¼ kðjFES
h j

2
� jFGS

h j
2
Þ and, in

the RD case with small conversion percentages, Lh =

kFGS
h � FES

h � FGS
h

� �
.

If we assume no variation of thermal effects, the second

term of equation (9) corresponds to IOFF
h , the laser-OFF

intensity of the reflection h. This approximation is valid for

single or few-pulse experiments, which are required for the

method described here. The equation can be rewritten as

�h ¼
ION

h � IOFF
h

IOFF
h

¼ Hh

Rþ1
t¼�1

exrayðtÞPðtÞ dt; ð10Þ

with Hh a characteristic factor of h defined as Hh ¼ Lh=IOFF
h .

We note that the factor Hh can be positive or negative

depending on the values of FES
h and FGS

h and is different for the

CF and RD cases.

Substituting the expression for PðtÞ [equation (3)], �h

becomes

�h ¼ Hh

Rþ1
t¼�1

exrayðtÞ

( Rt
treference¼�1

elaserðtreferenceÞ

� exp �ðt � treferenceÞ=�
� �

dtreference

)
dt: ð11Þ

By interchanging integrals, �h can be rewritten as

�h ¼ Hh�

Zþ1
x¼0

expð�x=�Þ

�

Rþ1
t¼�1

exrayðtÞelaserðt � xÞ dt

� �
dx

8<
:

9=
;:
ð12Þ

The term between the square brackets is the cross-correlation

of the pump and probe pulses. This equation is similar to that

obtained by Cerullo et al. (2007) for the pump-induced

variation of the probe energy in time-resolved absorption

spectroscopy. If the instantaneous laser and X-ray pulse

intensities elaser and exray are modeled with time-dependent

Gaussian functions with respective maxima emax
laser and emax

xray at

times tlaser and txray, and �laser and �xray the Gaussian functions’

standard deviations, �h becomes

�h ¼ Kh�

Zþ1
x¼0

expð�x=�Þ

�

exp �ðx� �tÞ2=2�2
M

	 

ð2�Þ1=2�M

 !
dx

2
4

3
5;
ð13Þ

where �t ¼ txray � tlaser, the pump–probe delay time, and

�2
M ¼ �

2
xray þ �

2
laser are the parameters of the Gaussian cross-

correlation function of the pump and probe pulses. Kh equals

p0emax
xrayemax

laserHh. Thus �t is negative when the X-ray maximum

preceeds that of the laser pulse and vice versa.

The factor between square brackets can be interpreted as

the convolution product of a normalized exponential decay

function (�; treference = 0) and a Gaussian function (� = 0; � =

�M). Such a convolution product is known as an exponentially

modified Gaussian function, used in chromatography for

asymmetric peak fitting (Lan & Jorgenson, 2001), in theore-

tical biology for cell proliferation and differentiation curve

fitting (Golubev, 2010) and by Gawelda et al. (2007) in pico-

second X-ray absorption spectroscopy of solutions.

2.2. Infinitely sharp laser pulse approximation of the gh
model

The beam pulse lengths can be defined by their half-

maximum intensity time windows (FWHM), labelled �t,

during which eðtÞ � emax=2. The � value is related to the

FWHM by � ¼ �t=2:355.
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We obtain, for the ratio of width �t of the two functions,

�txray =�tlaser

� �2
¼ �2

xray =�
2
laser: ð14Þ

A �t ratio larger than�3.2 corresponds to a �2 ratio of�10.0.

For larger ratios, �M can be approximated by �xray, which is

equivalent to modeling the laser beam pulse profile with a �
function.

2.3. Exponential decay limit of the gh model

When the ES lifetime � significantly exceeds the laser and

X-ray beam widths the limiting case is reached in which the �h

function in equation (12) approaches an exponential decay

function as shown in the following.

�h can be rewritten as

�h ¼
Kh

�1=2

Zþ1
y¼ 1ffiffi

2
p

�M
� �

�t
�M

� �expð�y2
Þ dy

2
6664

3
7775exp

��t

�
1�

�2
M

2��t

� 
� �
:

ð15Þ

In the case that �M ¼ ð�
2
laser þ �

2
xrayÞ

1=2
	 �t and 	 �, the

integral limits become þ1 and �1, and

�h �! Kh expð��t=�Þ: ð16Þ

3. Dependence of the gh response profile on the time
parameters

3.1. Normalized gh function, �̂�h

The �h profile depends on four time parameters: �laser, �xray,

� and �t. As in equation (15), all variables are in ratios of

parameters; multiplying each by a positive factor does not

change the �h profiles. Thus, the time parameters can be

converted to be dimensionless values by division by

�M ¼ ð�
2
laser þ �

2
xrayÞ

1=2. This way all �h results are valid inde-

pendent of the absolute time scale,

�hð�laser; �xray; �; �tÞ ¼ �h

�laser

�M

;
�xray

�M

;
�

�M

;
�t

�M

� 

: ð17Þ

Similarly, we introduce a relative lifetime �relative and a relative

delay time �trelative defined as

�relative
¼ �=�M and �trelative

¼ �t=�M: ð18Þ

With typical experimental values for the beam pulse and laser

windows �xray and �laser, such as �tlaser ¼ 30 ps and

�txray ¼ 100 ps, we get �laser ¼ 12:7 ps and �xray ¼ 42:5 ps,

which leads to �M ¼ 43:3 ps. According to (17), �h becomes a

function of the relative lifetime �relative and delay time �trelative

with �relative
xray ¼ 0:982 and �relative

laser ¼ 0:293. Kh is specific for each

reflection h and can be positive or negative. In the following

we normalize �h by dividing by Kh. This means that the

normalized �h, referred to as �̂�h, is always positive.

3.2. Plotting the �̂�h function

The expression of �̂�h (13) does not have an analytical

solution. However, it can be evaluated by using an approx-

imation of the Gaussian error function, erf,

�̂�h ¼
1

2
1� erf

1

21=2

�M

�
�
�t

�M

� 
� �� �
exp
��t

�
1�

�2
M

2��t

� 
� �
:

ð19Þ

Several approximations of erf are given by Abramowitz &

Stegun (1972). The approximation used in this work, which

has been coded in Python, has a maximum error of 1:5� 10�7

and is described in Appendix A.

Figs. 1(a) and 1(b) show �̂�h for �relative and �trelative intervals

of [0; 5�M] and [�2.5�M; 5�M] and illustrate the increase of the

�̂�h maximum intensity with �relative and the � dependence of �̂�h

profile skewness as a function of �trelative, respectively. These �̂�h

profiles are observed for very short positive and negative

delay times when the pump and probe pulses overlap (Fig. 2a).
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Figure 1
Three-dimensional plot of �̂�h as a function of the relative delay time
�trelative ¼ �t=�M and the relative lifetime �relative ¼ �=�M.



Fig. 2(b) shows that the profile asymmetry becomes more

significant as �relative increases.

The �̂�h values for the approximation �M ’ �xray are also

plotted in Fig. 2(b). The model profiles differ somewhat near

their maxima. However, in both cases the maximal intensity

is reached at almost the same time point �trelative
max even for

large �relative.

4. Methods for estimating s

To assure sufficient precision of the results the estimate of the

excited-state lifetimes � will require closely spaced sampling of

�t for each of the frames collected and repeated measure-

ments. As single pulse measurements are very rapid, this is

entirely feasible.

Depending on the relative lifetime �relative (¼ �=�M), two

different strategies can be used. From a mathematical point of

view the �h model is valid for any reflection. Nevertheless, in

practice, reflections h for which absolute j�h=��h
j values are

large should be selected in order to optimize the precision of �.

4.1. Quick estimation of s based on the position of the
maximum

For each reflection used, a �relative estimate can be deduced

from the position of the �̂�h maximum.

The derivative of �̂�h [equation (13)] as a function of �trelative

can be expressed by interchanging the derivation and inte-

gration operators as

d�̂�h

d�trelative
ð�trelative

Þ ¼ �
1

�relative
�̂�hð�t

relative
Þ

þ
1

ð2�Þ1=2
exp �

�trelative2

2

 !
: ð20Þ

When �trelative ¼ �trelative
max , d�̂�hð�t

relative
max Þ=d�trelative ¼ 0 and at this

point the �̂�hð�t
relative
max Þ value becomes

�̂�hð�t
relative
max Þ ¼ �

relative 1

ð2�Þ1=2
exp
��trelative

max
2

2

 !
: ð21Þ

Knowing �tmax, � can be refined to satisfy equation (21) (Fig. 3).

We introduce the function f , which relates �trelative
max to �relative.

This function cannot be evaluated analytically, but can be

approximated as ~ff as described in Appendix B. Its standard

deviation can be obtained from the distribution of the �relative

estimates from the individual reflections.

The relative uncertainty in �relative, ��relative=�relative, is related

to the relative uncertainty in �trelative
max , ��trelative

max
=�trelative

max , as

explained in Appendix B.

Fig. 4 shows that the ratio of the relative uncertainties in

�relative and �trelative
max , ratio� , plotted as a function of �trelative

max ,
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Figure 3
Plot of the relative lifetime �relative ¼ �=�M as a function of the relative
delay time �trelative

max ¼ �tmax=�M, with �tmax the instant at which �̂�h is
maximal. The black line (blue online) corresponds to the original �̂�h

model, and the grey line (orange online) to the approximated �M ’ �xray

model.

Figure 2
Plots of pump–probe signals for different relative delay times
�trelative ¼ �t=�M (a) and of �̂�h as a function of �trelative for different
relative lifetimes �relative ¼ �=�M (b). In (a) the grey curves (green online)
represent the laser pump pulse and the black curves (blue online) the
X-ray probe pulse. In (b) the full curves represent the original �̂�h model,
and the dashed ones the approximated �M ’ �xray model. The parameter
�M ¼ ð�

2
laser þ �

2
xrayÞ

1=2 is �40 ps in our experiments. The parameter �t is
the delay time between laser pump and X-ray pump pulse maxima.



increases with �trelative
max and ratio�ð�t

relative
max Þ � 1 or

��relative=�relative � ��trelative
max

=�trelative
max . It follows from the ratio�

profile that the uncertainties are different for short- and long-

lifetime �. Thus the uncertainties in �relative increase with

�trelative
max . A more precise estimate can be obtained by refine-

ment of a model of the system response as a function of �trelative

as described in the following section.

4.2. Least-squares fitting of the gh function

A more precise procedure is to perform a global least-

squares (LS) fitting of the �h model against the full set of �h

values collected for Nh different reflections with different �t,
with, as variables, � plus Nh multiplicative factors Kh (one per

reflection). The minimized LS error function " will be

" ¼ �hwh �
N�t
i¼1 �

measured
h ð�tiÞ � �

model
h ð�tiÞ

� �2
n o

: ð22Þ

If intensities are collected with a significant redundancy,

a weighting scheme can be introduced using ��mean
h

to

give wh ¼ 1=�2
�mean

h
.

Finally, if the preliminary plots of �h values as a function of

�t reveal a monotonic decreasing of �h, the LS fitting can be

based on the simple exponential decay of �h.

5. Conclusions and perspectives

The measurement of an excited-state lifetime using photo-

crystallographic techniques is an alternative to spectroscopic

methods for subnanosecond lifetimes, provided sufficient

precision is achieved by repeated measurement if necessary.

Furthermore, it allows the measurement of lifetimes of non-

luminescent excited states, which is of importance when the

emission is quenched by non-radiative processes. In all cases it

is necessary to closely sample �t.

APPENDIX A
Approximation of erf

The approximation of erf used in this work is defined as

erfðxÞ ¼
2

�1=2

Rx
y¼0

expð�y2Þ dy

’ signðxÞ
�
1� ða1t þ a2t2 þ a3t3

þ a4t4
þ a5t5

Þ expð�x2
Þ
�

ð23Þ

where

t ¼
1

1þ pjxj

with p = 0.3275911, a1 = 0.254829592, a2 = �0.284496736, a3 =

1.421413741 a4 = �1.453152027, a5 = 1.061405429.

APPENDIX B
Approximation of s as a function of dtmax

In x4.1 we introduce a quick estimation method of �relative

based on the �trelative
max estimate. The function f which gives, for

each �trelative
max , the corresponding �relative is unknown. However,

some characteristics of f can be obtained.

B1. Asymptotic behavior of f

The following relation between �relative and �trelative
max can be

deduced from equations (15) and (21),

Rþ1
y¼U

expð�y2Þ dy

" #
expðU2Þ ¼ �relative=21=2; ð24Þ

with U ¼ 1=21=2
� �

1=�relative � �trelative
max

� �
.

The asymptotic behaviors of f at þ1 and at 0þ (the posi-

tive side of 0) can be deduced from this expression (see

supplementary material1).

�relative
þ1
� ð2�Þ1=2exp �trelative

max

2
= 2

� �
ð25Þ

and

�relative
0þ
� �trelative

max : ð26Þ

B2. Approximation function f̃

Taking into account the asymptotic behaviors of f , an

approximation can be defined as

~ff ð�trelative
max Þ ¼ ð2�Þ

1=2

"
exp

�trelative
max

2

2

 !

þ
�trelative

max exp ��trelative
max

� �
ð2�Þ1=2

� 1

#
: ð27Þ

f and ~ff share the same asymptotic behaviors. The absolute

error remains reasonable, even for large �relative. For instance,
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Figure 4
Plot of ratio�, the ratio of the relative uncertainties in �relative ¼ �=�M and
�trelative

max ¼ �tmax=�M, with �tmax the instant at which �̂�h is maximal. ratio� is
drawn as a function of �trelative

max . The corresponding �relative values are also
given on the x axis. The orange dotted line corresponds to the constant
function ratio� ¼ 1.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: VV5035). Services for accessing these data are described
at the back of the journal.



for �trelative
max ¼ 2:65, f ð2:65Þ ¼ 80, while ~ff ð2:65Þ ’ 80:7. For

all �trelative
max 2 �0;þ1½, the relative error of �relative is smaller

than 4%.

B3. Ratio of relative uncertainties ratior

According to the propagation of errors, the approximate

uncertainty in �trelative
max is related to the uncertainty in �relative as

follows, where f 0 is the derivative of f ,

��relative ¼ f 0 �trelative
max

� ��� ����trelative
max

; ð28Þ

which gives, for the relative uncertainties,

��relative

�relative
¼

f 0ð�trelative
max Þ

�� ���trelative
max

f ð�trelative
max Þ

��trelative
max

�trelative
max

: ð29Þ

We define the function ratio� for �trelative
max 2 �0;þ1½ as

ratio�ð�t
relative
max Þ ¼

��relative=�relative

��trelative
max

=�tmax

¼
f 0ð�trelative

max Þ
�� ���trelative

max

f ð�trelative
max Þ

: ð30Þ
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