# research papers

Acta Crystallographica Section A Foundations of Crystallography

ISSN 0108-7673

Received 16 May 2001 Accepted 20 June 2001

# Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to $I^-$

Piero Macchi<sup>a</sup>\* and Philip Coppens<sup>b</sup>

<sup>a</sup> Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy, and <sup>b</sup>Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA. Correspondence e-mail: piero@csmtbo.mi.cnr.it

Relativistic wave functions for elements with Z = 37-54 [Su & Coppens (1998). Acta Cryst. A**54**, 646–652] have been fitted with a linear combination of Slatertype functions as defined by Bunge, Barrientos & Bunge [At. Data Nucl. Data Tables (1993), **53**, 113–162], for use in charge-density analysis and other applications. In addition, numerical relativistic wave functions have been calculated for all chemically relevant ions up to Z = 54, and corresponding analytical expressions have been derived. X-ray scattering factors calculated from the numerical wave functions are parameterized [in the  $\sin(\theta)/\lambda$  ranges 0.0-2.0, 2.0-4.0 and 4.0-6.0 Å<sup>-1</sup>] with six Gaussian functions, using the same method applied previously by Su & Coppens [Acta Cryst. (1997), A**53**, 749–762].

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

# 1. Introduction

Analytical expressions for atomic wave functions are widely used in X-ray charge-density analysis to evaluate the charge density and to calculate the electrostatic properties from models fitted to the X-ray intensities (Coppens, 1997). The well known functions by Clementi & Roetti (1974) have been commonly employed for this purpose and have similarly been applied in many other theoretical applications. However, with the increased accuracy of experimental charge densities due to recent technical developments, there is a need for more accurate analytical functions, especially for heavier atoms.

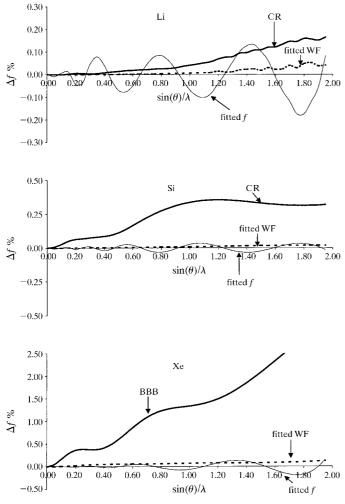
Analytical wave functions including relativistic effects have been determined for neutral ground-state atoms up to Z = 36(Su & Coppens, 1998) by fitting a linear combination of Slatertype functions (from Bunge *et al.*, 1993) to the numerical solutions at multiconfiguration Dirac–Fock level, obtained with the program *GRASP92* (Parpia *et al.*, 1996).

We describe here an extension of this work to neutral atoms of the fifth period (Rb–Xe) using the same procedure, based on a non-linear least-squares fitting program [*L-BFGS-B*, Zhu *et al.* (1994)]. For the neutral atoms, the relativistic wave functions already calculated by Su & Coppens (1997) were used. In addition, numerical relativistic wave functions have been calculated for all chemically relevant ions up to Z = 54and corresponding analytical expressions have been derived.

The X-ray scattering factors for the ions, calculated from the numerical wave functions, are parameterized [in the  $\sin(\theta)/\lambda$  ranges 0.0–2.0, 2.0–4.0 and 4.0–6.0 Å<sup>-1</sup>] with six Gaussian functions, using the same method previously adopted for neutral atoms (Su & Coppens, 1997). For the heavier ions, only the first range is included, as the higherorder scattering factors are almost identical to those of the neutral configurations.

# 2. Computational details

The program package *GRASP92* (Parpia *et al.*, 1996) was used to calculate multiconfigurational relativistic wave functions for chemically relevant ions, from Li<sup>+</sup> up to I<sup>-</sup>. All the configurations reported in *International Tables for Crystallography* (Maslen *et al.*, 1992) were computed, with the exception of  $Mo^{5+}$ , for which convergence could not be achieved. The calculated energies are reported in the supporting material.<sup>1</sup>


For anions, there are well known problems in performing the calculations owing to the inherent lack of convergence. Wang *et al.* (1996) computed only those anions that are stable at the Dirac–Fock level of treatment (namely, the halides and O<sup>-</sup>). On the other hand, Rez *et al.* (1994) adopted the procedure suggested by Watson (1958), *i.e.* surrounding the anion by a sphere of positive charges for stabilization. Consequently, the scattering factors reported in the literature differ significantly. Our calculations were performed for O<sup>-</sup> and the halides, without applying Watson's (1958) method. Accordingly, the results are quite similar to those reported by Wang *et al.* (1996) and exclude the ions that are not stable in isolation.

<sup>&</sup>lt;sup>1</sup> Supplementary data for this paper, including calculated energies and maximum and mean deviations for each fit, are available from the IUCr electronic archives (Reference: AU0256). Services for accessing these data are given at the back of the journal.

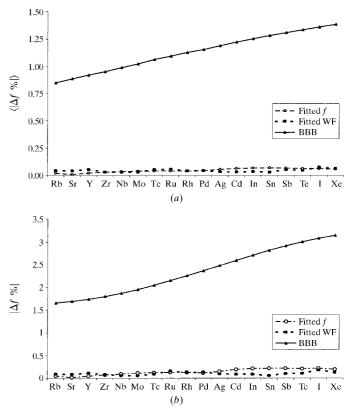
For cations with large charges  $(M^{n+})$ , false convergence was sometimes encountered. To avoid this problem, an initial guess was taken from the wave function converged for either  $M^{(n-1)+}$  or the nearest isoelectronic cation in the Periodic Table.

As for the ground-state neutral atoms, multiconfiguration calculations were necessary for all the open-shell ions, for which several relativistic configuration state functions (CSF) were used. In the self-consistent field (SCF) procedure, we adopted the optimal level (OL) model, which is known to give more accurate results than the extended average level (EAL).

The radial functions of each relativistic subshell contain a major, P(r), and a minor, Q(r), component, which are evaluated at selected exponential grid points (typically less than



#### Figure 1


 $\Delta f \%$  for neutral ground-state Li, Si and Xe, as a function of  $\sin(\theta)/\lambda$  (Å<sup>-1</sup>). The reference *f* is obtained with equation (4) from the numerical Dirac–Fock solution. The 'CR' curve is computed with  $f^{\dagger}$  calculated for the Clementi & Roetti (1974) wave function [for Xe, the non-relativistic wave function is taken from Bunge *et al.* (1993), 'BBB']; 'fitted WF' refers to  $f^{\dagger}$  calculated from Bunge *et al.* (1993) wave function after applying the fitting procedure (2) to the density of the relativistic numerical solution [Su & Coppens (1998) for Li and Si; this work for Xe]; 'fitted *f*' refers to the six-term Gaussian expansion (5) of the relativistic numerical scattering factor (Su & Coppens, 1998).

400). The radial density of a given shell A can be easily computed as

$$R_A(r) = [P_A^2(r) + Q_A^2(r)].$$
 (1)

In relativistic atomic structure theory, subshells *nl* with  $l \neq 0$ are split: np is split into  $np_{3/2}$  and  $np_{1/2}$ ; while nd is split into  $nd_{5/2}$  and  $nd_{3/2}$ . The radial density for the corresponding nonrelativistic electron shell can be obtained by averaging the two relativistic radial densities (which are slightly different) using weights proportional to their generalized occupancies. The radial density of each orbital was then fitted by varying the coefficients and exponents of the analytical expressions for neutral atoms by Bunge et al. (1993). Other high-quality nonrelativistic wave functions have been reported more recently [see for example Koga et al. (1999)], but for consistency we used the same functions previously adopted for the neutral atoms up to Kr (Su & Coppens, 1998). The Fortran routine L-BFGS-B (Zhu et al., 1994) was used for the least-squares procedure. For each atomic orbital  $\varphi$ , the function  $\chi^2$  was minimized:

$$\chi^{2} = \sum_{i=1}^{npts} w(r_{i}) \left( R(r_{i}) - r_{i}^{2} \left\{ \sum_{j=1}^{m} [(2n_{j})!]^{-1/2} (2\zeta_{j})^{n_{j}+1/2} c_{j} r_{i}^{n_{j}-1} \right. \\ \left. \times \exp(-\zeta_{j} r_{i}) \right\} \right)^{2}.$$
(2)



#### Figure 2

Average (a) and largest (b) absolute  $\Delta f \%$  for neutral atoms of the fifth row. 'BBB', 'fitted WF' and 'fitted f' have the same meaning as in Fig. 1. The 'fitted WF' results come from this work, 'fitted f' from Su & Coppens (1997).

# Table 1

Parameters of the six Gaussian expansion for ionic scattering factors (0–2.0  $\text{\AA}^{-1}$  range).

| Li <sup>+</sup><br>Be <sup>2+</sup><br>C <sub>val</sub> | 0.79375<br>2.88678 | 0.54736  |          |          |           |           |
|---------------------------------------------------------|--------------------|----------|----------|----------|-----------|-----------|
| Be <sup>2+</sup>                                        |                    |          | 0.46161  | 0.13918  | 0.05800   | 0.00010   |
|                                                         |                    | 1.16905  | 6.18250  | 0.31715  | 12.60983  | 28.15927  |
|                                                         | 0.82577            | 0.73691  | 0.23557  | 0.20135  | 0.00034   | 0.00010   |
| C <sub>val</sub>                                        | 2.04212            | 0.80252  | 4.60157  | 0.21162  | 43.68258  | 103.45510 |
|                                                         | 2.03492            | 1.64286  | 0.68060  | 0.67022  | 0.51650   | 0.45488   |
|                                                         | 25.99675           | 11.77809 | 0.51013  | 0.97866  | 0.16915   | 57.91874  |
| 0-                                                      | 3.56378            | 2.14950  | 1.52760  | 1.47980  | 0.27065   | 0.00010   |
| 0                                                       | 14.10561           | 5.60491  | 0.32801  | 46.88862 | 0.00980   | 10.98084  |
| $F^{-}$                                                 | 3.22684            | 2.47111  | 1.59839  | 1.28490  | 1.11335   | 0.30182   |
| 1                                                       | 4.95997            | 14.45952 | 0.17267  | 11.39653 | 43.30817  | 0.96703   |
| Na <sup>+</sup>                                         | 3.69529            | 3.30459  | 1.68333  | 0.69149  | 0.62431   | 0.00088   |
| i tu                                                    | 3.24183            | 7.07179  | 0.12279  | 15.45334 | 1.43664   | 35.26383  |
| Mg <sup>2+</sup>                                        | 4.30385            | 2.58390  | 1.71397  | 1.39368  | 0.00470   | 0.00010   |
|                                                         | 4.02045            | 1.85304  | 0.10693  | 8.78523  | 58.58712  | 125.50050 |
| $Al^{3+}$                                               | 4.19367            | 3.00032  | 1.71590  | 1.08840  | 0.00167   | 0.00010   |
|                                                         | 3.37134            | 1.58637  | 0.09158  | 6.99679  | 45.26456  | 113.97270 |
| Si <sub>val</sub>                                       | 5.49488            | 3.33770  | 2.38765  | 1.59864  | 1.17986   | 0.00010   |
| SIval                                                   |                    |          |          |          |           | 56.27056  |
| Si <sup>4+</sup>                                        | 2.60802            | 37.46289 | 1.09647  | 0.06439  | 80.52337  |           |
| 51                                                      | 3.98392            | 3.53675  | 1.72808  | 0.75103  | 0.00013   | 0.00010   |
| 01-                                                     | 2.94648            | 1.39488  | 0.08069  | 5.91604  | 56.23176  | 79.76580  |
| Cl <sup>-</sup>                                         | 7.13932            | 6.34213  | 2.29801  | 1.97826  | 0.22854   | 0.00983   |
| ***                                                     | 1.18073            | 19.52901 | 61.04850 | 0.08057  | 23.18225  | 0.09759   |
| $K^+$                                                   | 8.00372            | 7.44077  | 1.42217  | 1.13491  | 0.00010   | 0.00010   |
| 2.                                                      | 12.70476           | 0.77473  | 0.00010  | 32.44270 | 199.99900 | 82.98298  |
| Ca <sup>2+</sup>                                        | 8.66803            | 7.39747  | 1.38325  | 0.55348  | 0.00010   | 0.00010   |
|                                                         | 10.62955           | 0.66306  | 0.00010  | 30.98476 | 199.99880 | 82.97898  |
| Sc <sup>3+</sup>                                        | 9.01395            | 7.36477  | 1.32160  | 0.30179  | 0.00010   | 0.00010   |
|                                                         | 8.86658            | 0.56771  | 0.00010  | 29.98133 | 137.40030 | 53.69811  |
| Ti <sup>2+</sup>                                        | 9.67607            | 7.35874  | 1.66775  | 1.29681  | 0.00010   | 0.00010   |
|                                                         | 7.92858            | 0.50388  | 23.88214 | 0.00010  | 92.10388  | 145.58810 |
| Ti <sup>3+</sup>                                        | 9.56376            | 7.35320  | 1.26997  | 0.81496  | 0.00010   | 0.00010   |
|                                                         | 7.72729            | 0.49604  | 0.00010  | 22.37931 | 92.10560  | 145.58920 |
| Ti <sup>4+</sup>                                        | 9.22395            | 7.35117  | 1.23367  | 0.19305  | 0.00010   | 0.00010   |
|                                                         | 7.44634            | 0.48595  | 0.00010  | 28.20512 | 92.10930  | 145.59010 |
| $V^{2+}$                                                | 10.14209           | 7.35015  | 2.25361  | 1.23887  | 0.01533   | 0.00010   |
|                                                         | 6.90615            | 0.44224  | 20.14575 | 0.00010  | 120.21700 | 55.09812  |
| $V^{3+}$                                                | 10.05723           | 7.34875  | 1.38759  | 1.20752  | 0.00010   | 0.00010   |
| •                                                       | 6.75290            | 0.43509  | 18.25122 | 0.00010  | 120.22150 | 55.11062  |
| $V^{5+}$                                                | 9.37695            | 7.36389  | 1.11621  | 0.14450  | 0.00010   | 0.00010   |
|                                                         | 6.31625            | 0.41568  | 0.00010  | 25.36044 | 199.99870 | 82.97847  |
| $Cr^{2+}$                                               | 10.54130           | 4.41457  | 2.93436  | 2.87024  | 1.17229   | 0.06743   |
| 0.                                                      | 6.04009            | 0.38967  | 0.38966  | 16.94938 | 0.00010   | 59.98400  |
| Cr <sup>3+</sup>                                        | 10.45597           | 4.43683  | 2.92505  | 2.06149  | 1.11981   | 0.00120   |
| CI                                                      | 5.90641            | 0.38863  | 0.37041  | 15.34221 | 0.00010   | 59.68271  |
| Mn <sup>2+</sup>                                        | 10.86580           | 7.35401  | 3.49267  | 1.09987  | 0.18537   | 0.00249   |
| IVIII                                                   | 5.30450            | 0.34487  | 14.15718 | 0.00010  | 38.60730  | 100.13560 |
| Mn <sup>3+</sup>                                        |                    |          |          |          |           |           |
| MIN                                                     | 11.04414           | 4.43611  | 4.06737  | 2.44502  | 0.00559   | 0.00189   |
| 4+                                                      | 5.32462            | 0.15971  | 0.47488  | 13.90108 | 100.14020 | 38.59723  |
| Mn <sup>4+</sup>                                        | 10.80739           | 7.37819  | 1.80548  | 1.00948  | 0.00010   | 0.00010   |
| Fe <sup>2+</sup>                                        | 5.12031            | 0.33181  | 12.46589 | 0.00010  | 100.14660 | 38.60185  |
|                                                         | 11.32394           | 7.35828  | 4.08542  | 1.03934  | 0.19438   | 0.00010   |
| - 3                                                     | 4.71611            | 0.30793  | 12.87900 | 0.00024  | 43.73118  | 103.91920 |
| Fe <sup>3+</sup>                                        | 11.27641           | 7.37595  | 3.32058  | 0.98461  | 0.04263   | 0.00010   |
| 2                                                       | 4.63894            | 0.30169  | 11.63908 | 0.00010  | 44.10289  | 103.92070 |
| Co <sup>2+</sup>                                        | 11.59539           | 7.37601  | 4.75131  | 0.95818  | 0.31843   | 0.00010   |
|                                                         | 4.18474            | 0.27510  | 11.19206 | 0.00010  | 36.27509  | 93.95933  |
| Co <sup>3+</sup>                                        | 11.58135           | 7.38964  | 4.01201  | 0.91419  | 0.10353   | 0.00010   |
|                                                         | 4.13155            | 0.27012  | 10.32693 | 0.00010  | 35.20369  | 93.95908  |
| Ni <sup>2+</sup>                                        | 11.83838           | 5.16446  | 4.59215  | 3.72826  | 0.67719   | 0.00010   |
|                                                         | 3.76040            | 9.57707  | 0.31557  | 0.11646  | 25.17286  | 96.76703  |
| Ni <sup>3+</sup>                                        | 12.08932           | 7.37051  | 4.53328  | 0.89389  | 0.11440   | 0.00010   |
|                                                         | 3.73486            | 0.24588  | 9.52524  | 0.00100  | 36.54998  | 96.77110  |
| Cu <sup>+</sup>                                         | 11.74994           | 6.77249  | 6.21229  | 1.75552  | 1.47560   | 0.03461   |
|                                                         | 3.34714            | 0.23831  | 8.32820  | 23.58346 | 0.04331   | 98.01738  |
| $Cu^{2+}$                                               | 11.83187           | 5.78192  | 5.77531  | 2.46041  | 1.14698   | 0.00353   |
| <u> </u>                                                | 3.33965            | 0.25530  | 8.03031  | 0.08201  | 19.99327  | 98.02090  |
| $Zn^{2+}$                                               | 12.49609           | 7.88148  | 4.99190  | 2.05602  | 0.57505   | 0.00010   |
|                                                         | 3.52509            | 0.16619  | 9.20541  | 1.71372  | 24.20427  | 82.21923  |
| Ga <sup>3+</sup>                                        | 10.80193           | 7.89470  | 5.30620  | 3.91136  | 0.08693   | 0.00010   |
|                                                         | 3.67800            | 0.15468  | 2.08510  | 9.11568  | 34.76155  | 99.34953  |

# research papers

#### Table 1 (continued)

| Atom              | $egin{array}{c} a_1 \ b_1 \end{array}$ | $egin{array}{c} a_2 \ b_2 \end{array}$ | $a_3$<br>$b_3$ | $egin{array}{c} a_4 \ b_4 \end{array}$ | $a_5$<br>$b_5$ | $a_6$<br>$b_6$     |
|-------------------|----------------------------------------|----------------------------------------|----------------|----------------------------------------|----------------|--------------------|
|                   |                                        |                                        |                |                                        |                |                    |
| 3.75852           | 2.14595                                | 0.14366                                | 8.16207        | 30.93576                               | 72.3144        |                    |
| $\mathrm{Br}^-$   | 14.72809                               | 7.73340                                | 4.08153        | 3.89920                                | 2.84995        | 2.70412            |
|                   | 1.87781                                | 0.11285                                | 23.45650       | 3.65207                                | 21.50646       | 68.5043            |
| Rb <sup>+</sup>   | 17.72736                               | 7.70846                                | 6.22707        | 4.23320                                | 0.10456        | 0.0001             |
|                   | 1.68258                                | 0.09962                                | 13.34713       | 25.64859                               | 76.90928       | 199.9986           |
| Sr <sup>2+</sup>  | 13.56253                               | 9.15282                                | 7.57461        | 4.23621                                | 1.47524        | 0.0001             |
|                   | 1.52639                                | 13.37893                               | 0.09009        | 1.50827                                | 28.97999       | 162.8613           |
| Y <sup>3+</sup>   | 17.83594                               | 10.00061                               | 7.34299        | 0.76995                                | 0.05161        | 0.0001             |
|                   | 1.37290                                | 11.94201                               | 0.07979        | 27.59179                               | 0.08311        | 137.7253           |
| Zr <sup>4+</sup>  | 17.88797                               | 10.57832                               | 7.18725        | 0.34750                                | 0.00010        | 0.00010            |
|                   | 1.24006                                | 10.60035                               | 0.06944        | 29.00543                               | 131.45550      | 1.67829            |
| Nb <sup>3+</sup>  | 17.94269                               | 11.64938                               | 7.03542        | 1.17571                                | 0.20353        | 0.00010            |
|                   | 1.13911                                | 10.82291                               | 0.06147        | 34.40293                               | 1.15832        | 134.27490          |
| Nb <sup>5+</sup>  | 17.35713                               | 10.99074                               | 7.04050        | 0.57079                                | 0.04542        | 0.0001             |
|                   | 1.13181                                | 9.52278                                | 0.06199        | 1.11378                                | 134.27980      | 38.4076            |
| Mo <sup>3+</sup>  | 16.70847                               | 11.98967                               | 6.70451        | 1.98553                                | 1.61267        | 0.00010            |
| wi0               | 1.02628                                | 9.86398                                | 0.04848        | 26.23584                               | 1.02613        | 83.38388           |
| Mo <sup>6+</sup>  | 16.84671                               | 11.18317                               | 6.67150        | 1.21668                                | 0.08306        | 0.00010            |
| wi0               | 1.01489                                | 8.31776                                | 0.04772        | 1.01511                                | 36.37142       | 83.39908           |
| Ru <sup>3+</sup>  | 16.20121                               | 13.68489                               | 5.92693        | 2.62037                                | 2.56751        | 0.0001             |
| NU                | 0.83651                                | 8.66621                                | 0.02083        | 0.83653                                | 22.32915       | 67.41669           |
| Ru <sup>4+</sup>  | 15.97671                               | 13.58921                               | 5.91839        | 2.79182                                | 1.72564        | 0.0001             |
| Ru                | 0.83452                                | 8.38679                                | 0.02066        | 0.83387                                | 21.20783       | 67.4226            |
| Rh <sup>3+</sup>  | 14.55243                               | 14.36520                               | 5.43109        | 3.60085                                | 21.20785       | 1.1860             |
| Rh                |                                        |                                        |                |                                        |                |                    |
| <b>D</b> 1 4+     | 8.09600                                | 0.75250                                | 0.00422        | 0.75381                                | 21.00325       | 0.75895<br>1.35484 |
| $Rh^{4+}$         | 14.57165                               | 14.10996                               | 5.40851        | 3.65768                                | 1.90013        |                    |
| D 1 <sup>2+</sup> | 7.90759                                | 0.75012                                | 0.00354        | 0.75338                                | 19.97214       | 0.75124            |
| Pd <sup>2+</sup>  | 19.27390                               | 15.67787                               | 5.26036        | 3.78685                                | 0.00010        | 0.00010            |
| <b>1</b> 4+       | 0.69511                                | 7.84482                                | 0.00010        | 22.21775                               | 60.82368       | 1.12994            |
| Pd <sup>4+</sup>  | 19.16608                               | 15.58248                               | 5.24991        | 1.97949                                | 0.02452        | 0.00010            |
|                   | 0.69220                                | 7.50980                                | 0.00010        | 19.35021                               | 0.69139        | 60.83050           |
| Ag <sup>+</sup>   | 19.29333                               | 16.76786                               | 5.18419        | 4.69146                                | 0.06334        | 0.00010            |
|                   | 0.64534                                | 7.54710                                | 0.00010        | 23.16034                               | 100.32570      | 2.35114            |
| Ag <sup>2+</sup>  | 19.26038                               | 16.76118                               | 5.17728        | 3.80102                                | 0.00010        | 0.00010            |
| 2.                | 0.64383                                | 7.44215                                | 0.00010        | 21.24567                               | 100.31430      | 2.43992            |
| Cd <sup>2+</sup>  | 19.24328                               | 17.81622                               | 5.07556        | 3.86538                                | 0.00010        | 0.00010            |
|                   | 0.59548                                | 7.03822                                | 0.00010        | 20.12238                               | 87.60555       | 31.88584           |
| In <sup>3+</sup>  | 19.15099                               | 19.02664                               | 5.11556        | 1.72846                                | 1.00259        | 0.00010            |
|                   | 0.55860                                | 6.79490                                | 0.00370        | 25.60539                               | 8.23095        | 93.69624           |
| Sn <sup>2+</sup>  | 19.14517                               | 19.11002                               | 4.80720        | 4.48861                                | 0.25075        | 0.20103            |
|                   | 5.86776                                | 0.50516                                | 0.00010        | 24.33452                               | 87.00222       | 31.41846           |
| Sn <sup>4+</sup>  | 19.71431                               | 19.14550                               | 4.79767        | 2.34645                                | 0.00010        | 0.00010            |
| 2                 | 6.04052                                | 0.50506                                | 0.00010        | 16.17828                               | 87.05909       | 31.4979            |
| Sb <sup>3+</sup>  | 19.06093                               | 12.90928                               | 6.64901        | 4.63278                                | 4.60732        | 0.14140            |
|                   | 0.46390                                | 5.35884                                | 5.35853        | 0.00010                                | 21.75129       | 70.66362           |
| Sb <sup>5+</sup>  | 19.55274                               | 19.11016                               | 4.62585        | 1.75378                                | 0.96170        | 0.00010            |
|                   | 5.57560                                | 0.46433                                | 0.00010        | 15.08594                               | 5.57571        | 70.66860           |
| Ι-                | 18.97534                               | 15.68841                               | 6.74714        | 4.42194                                | 4.08431        | 4.06854            |
|                   | 0.38165                                | 4.33217                                | 26.51128       | 4.35007                                | 0.00013        | 70.73529           |

w(r) is a weighting function;  $c_j$  and  $\zeta_j$  are the coefficient and exponent (variable parameters) of the basis function *j* in the expansion of orbital  $\varphi_A$ ;  $n_j$  is the principal quantum number of the basis function *j* (it is kept fixed);  $r_i$  are the gridpoints where the numerical wave function is evaluated. As in the preceding work, we used w(r) = 1.0 for all orbitals, with few exceptions (applied for r < 0.5 a.u.): (*a*) for 1*s* orbitals of the fourth period ions  $w(r) = 1.0 \times 10^{-3}$ ; (*b*) for 1*s* orbitals of the fifth period atoms and ions,  $w(r) = 1.0 \times 10^{-5}$ ; (*c*) for 2*s* and 2*p* orbitals of the fifth period atoms and ions,  $w(r) = 1.0 \times 10^{-3}$ .

Note that the least-squares fittings produce wave functions that no longer have the same basis exponents for all the orbitals of a given l type. For example, in the energy-minimized wave functions (Clementi & Roetti, 1974; Bunge *et al.*, 1993), all the *s* orbitals of an atomic configuration are expanded in terms of the same *m* functions; thus, 1*s*, 2*s etc*. differ only for the  $c_j$  coefficients of the expansion. Instead, in the wave functions based on least-squares minimization of the error function (2), 1*s*, 2*s etc*. differ for the  $c_j$  coefficients as well as (slightly) for the  $\zeta_j$  exponents of the basis functions. The principal quantum numbers  $n_j$  and the total number of basis functions *m* are the same for all the orbitals of a given *l* type and are identical to the values of the starting data set (Bunge *et al.*, 1993). However, four ions required a change in one of the basis functions in order to improve the fitting: (a) O<sup>-</sup> and F<sup>-</sup>: for the outermost function of the 2*p* orbital, we set  $n_j = 3$  instead of  $n_j = 2$ ; (b) Co<sup>2+</sup> and Co<sup>3+</sup>: for the eighth function of the 1*s* orbitals, we set  $n_j = 3$  instead of  $n_j = 4$ .

The converged wave functions are slightly unnormalized (typically by less than 0.05%). Therefore, a rescaling of the  $c_i$ 's was necessary in order to have perfectly normalized functions. In Figs. 1–6, the scattering factors calculated from these wave functions are labeled 'fitted WF'.

A parameterization of the relativistic scattering factors from the numerical solution was also performed for all the ions considered, applying the method proposed by Su & Coppens (1997). For each ion, the numerical radial wave function was first converted into the corresponding electron density

$$\rho(r) = (4\pi r^2)^{-1} \sum_A N_A [P_A^2(r) + Q_A^2(r)].$$
(3)

 $N_A$  is the generalized occupation of the relativistic shell A, as determined from the multiconfiguration calculation. Then, the scattering factor was computed, evaluating numerically

$$f(\sin\theta/\lambda) = \int_{0}^{\infty} 4\pi r^{2} \rho(r) [\sin(4\pi r \sin\theta/\lambda)/4\pi r \sin\theta/\lambda] \,\mathrm{d}r.$$
(4)

Finally, a non-linear least-squares fit to the six Gaussian expansion [equation (5)] was performed:

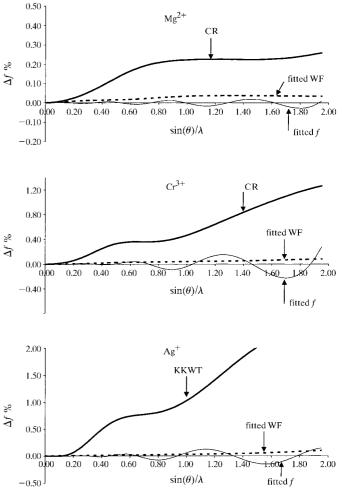
$$f(\sin\theta/\lambda) = \int_{i=1}^{6} a_i \exp[-b_i(\sin\theta/\lambda)^2].$$
 (5)

The starting  $a_i$  and  $b_i$  coefficients were those refined for neutral configurations (Su & Coppens, 1997). The optimization was performed using a modified routine of the non-linear optimization program *L-BFGS-B* (Zhu *et al.*, 1994). In the range  $0.0 < \sin(\theta)/\lambda < 2.0 \text{ Å}^{-1}$ , all ions were fitted. In the ranges 2.0-4.0 and  $4.0-6.0 \text{ Å}^{-1}$ , the parameterization was necessary only for  $M^+$ ,  $M^{2+}$  and  $X^-$  of the second period,  $M^{3+}$ and  $M^{4+}$  of the third and fourth periods,  $M^{5+}$  and  $M^{6+}$  of the fourth and fifth periods. In fact, the remaining ions have highorder scattering factors not significantly different from those of the corresponding neutral configurations (Su & Coppens, 1997).

The parameters of the six Gaussian expansion are reported in Table 1, while maximum and mean deviations for each fit have been deposited as supporting material.<sup>2</sup> In Figs. 1–6, scattering factors computed with the six Gaussian expansion coefficients are labeled 'fitted f'.

## 3. Discussion

As is well known, relativistic effects are particularly significant as the atomic number increases.


For each atom or ion, taking as reference the scattering factor f obtained from (4), the function

$$\Delta f\% = [(f - f^{\dagger})/f] \times 100$$
 (6)

<sup>2</sup> See deposition footnote

was evaluated with  $f^{\dagger}$  computed from a non-relativistic wave function, from the wave function fitted with (2) and from the six Gaussian function expansion (5).

Fig. 1 shows the  $\Delta f$  values for Li, Si and Xe. It is clear that the atomic scattering factor of ground-state Li from a nonrelativistic wave function (Clementi & Roetti, 1974) does not contain substantial errors [ $\Delta f \% < 0.2$  within the range  $0.0 < \sin(\theta)/\lambda < 2.0 \text{ Å}^{-1}$ ]. The two analytical expressions of the relativistic f ('fitted f' and 'fitted WF') produce minor improvements. The effects are more significant for a third-row atom such as Si, and they eventually become very important for subsequent periods (see Xe, which is the heaviest atom considered in this work). As illustrated in Fig. 2, the scattering factors of fifth-row neutral atoms, as calculated from non-relativistic wave functions, have within the range  $0.0 < \sin(\theta)/\lambda < 2.0 \text{ Å}^{-1}$  average errors larger than 1.0% and maximum errors up to 3.0%. The analytical expressions for the relativistic f differ from the numerical solution by less than 0.2%.





 $\Delta f\%$  for Mg<sup>2+</sup>, Cr<sup>3+</sup> and Ag<sup>+</sup> as a function of  $\sin(\theta)/\lambda$  (Å<sup>-1</sup>). 'CR', 'fitted WF' and 'fitted *f*' have the same meaning as in Fig. 1; for Ag<sup>+</sup>, the non-relativistic wave function was taken from Koga *et al.* (1999) and labelled 'KKWT'. Both analytical expressions of relativistic *f* come from this work.

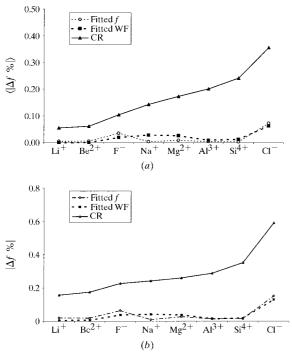
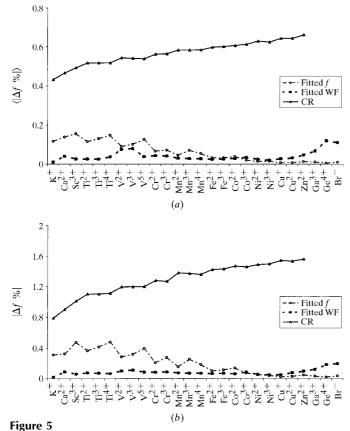
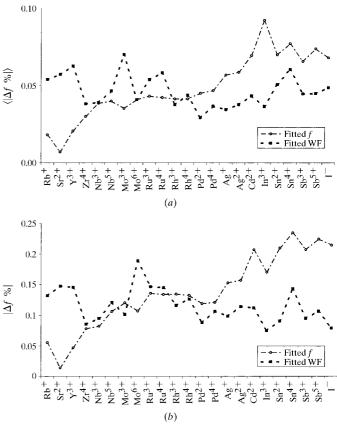
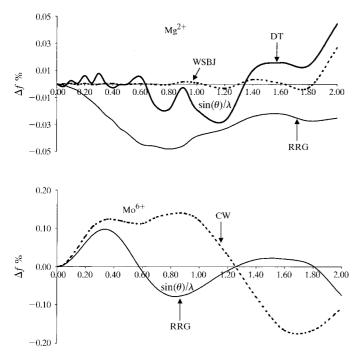




Figure 4


Average (a) and largest (b) absolute percentile differences of scattering factors for ions of the second and third rows. 'CR', 'fitted WF' and 'fitted f' have the same meaning as in previous figures. Both 'fitted WF' and 'fitted f' results come from this work.



Average (a) and largest (b) absolute percentile differences of scattering factors for chemically relevant ions of the fourth row. Labels as in Fig. 4. (CR wave functions for  $Ga^{3+}$  and  $Ge^{4+}$  were not available in electronic format.)


Core-electron distributions are of course the most affected by relativistic effects, thus  $\Delta f \%$  increases with  $\sin(\theta)/\lambda$ , as valence electrons contribute little to the high-order data. In the determination of an accurate electron-density distribution from X-ray intensities, the main error produced by the use of a non-relativistic wave function is therefore expected to occur in the thermal parameters. However, this in turn will affect the static density produced by the deconvolution of thermal motion from the experimental results.

Cations and anions up to Z = 54 show trends similar to those of neutral atoms (see Fig. 3 for plots of Mg<sup>2+</sup>, Cr<sup>3+</sup> and Ag<sup>+</sup>). For second- and third-row ions, the largest error of the non-relativistic approach is 0.6% for Cl<sup>-</sup> (Fig. 4). For fourthrow ions, the difference is quite significant (on average  $|\Delta f \%| > 0.5$ ; largest  $|\Delta f \%| > 1.2$ ). On the other hand, nonrelativistic wave functions are not available for most of the fifth-row ions, thus a full comparison is not possible. For mono-cations, scattering factors based on the functions published by Koga *et al.* (1999) show a large difference compared with results from the relativistic approach (see Ag<sup>+</sup> in Fig. 3). A test calculation for neutral Xe showed the scattering-factor curve based on the Koga wave function to be within 0.1% of the results from the Bunge wave function.



#### Figure 6

Average (a) and largest (b) absolute  $\Delta f \%$  for chemically relevant ions of the fifth row. Only the relativistic analytical expressions are plotted as non-relativistic wave functions are not available for most of these ions. 'Fitted WF' and 'fitted f' have the same meaning as in the previous plots. Note that the scale here is much expanded with respect to the previous figures.



**Figure 7**  $\Delta f(=f^{\dagger}-f)$ % for Mg<sup>2+</sup> and Mo<sup>6+</sup> as a function of sin( $\theta$ )/ $\lambda$  (Å<sup>-1</sup>); the reference f is the relativistic scattering factor from the numerical solution evaluated in this work,  $f^{\dagger}$  is the relativistic scattering factor tabulated in Rez et al. (1994), RRG, in Wang et al. (1996), WSBJ, in Doyle & Turner (1968), DT, and in Cromer & Waber (1968), CW.

It is of interest to compare the performances of the two kinds of analytically calculated relativistic scattering factors. The six-term Gaussian expansions ('fitted f') are usable only in spherical atom refinements. These expansions typically have somewhat larger errors, which reflects the oscillating behavior produced by the fitting (Figs. 1 and 3). They do not seem to be affected by any systematic effect along the sin  $\theta/\lambda$  axis. As judged from the percent errors, the worst agreement is found for Sc<sup>3+</sup> and Ti<sup>4+</sup>.

The starting point of the analytical wave-function fittings ('fitted WF') of the ions were the optimized wave functions for neutral atoms. The scattering factors calculated are very satisfactory, indicating that the fitting procedure has been quite successful (see Figs. 4-6). The error functions along  $\sin(\theta)/\lambda$  show a systematic behavior, though it is quite negligible. The worst agreement is found for  $Mo^{6+}$ .

A comparison between the relativistic scattering factors reported in the literature is of interest for estimating the accuracy of these calculations. As discussed above, differences for anions are affected by the application of the method suggested by Watson (1958). For cations, the agreement between the different methods is within 0.05% for light atoms and within 0.2% for heavy atoms (see Fig. 7). It should be noticed, however, that the accuracy of calculations by Doyle & Turner (1968) and by Cromer & Waber (1968) was less than those reported here. Accordingly, our results are much closer to those of Wang et al. (1996) (which are however limited to atoms up to Ar) and those of Rez et al. (1994), which are extended to atoms beyond Xe, but do not contain all the cations.

Taking into account the average errors of the wave function fitting procedure based on (2), it is notable that the analytical expressions derived in this work reproduce the relativistic scattering factors within the range of 'uncertainty'. The use of these wave functions in electron-density analysis from experimental X-ray models will give more accurate results, especially when dealing with heavy atoms for which differences with non-relativistic treatments become more substantial.

The results of this work have been deposited as supporting material and are available at http://harker.chem.buffalo.edu.

Support of this work by the National Science Foundation (CHE9981864) is gratefully acknowledged.

### References

- Bunge, C. F., Barrientos, J. A. & Bunge, A. V. (1993). At. Data Nucl. Data Tables, 53, 113-162.
- Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data Tables, 14, 177-478.
- Coppens, P. (1997). X-ray Charge Density and Chemical Bonding. Oxford University Press.
- Cromer, D. T. & Waber, J. T. (1968). Unpublished. Reported in International Tables for Crystallography (1974), Vol. IV, p. 71. Birmingham: Kynoch Press. (Present distributer: Kluwer Academic Publishers, Dordrecht.)
- Doyle, P. A. & Turner, P. S. (1968). Acta Cryst. A24, 390-397.
- Koga, T., Kanayama, K., Watanabe, S. & Takkar, A. J. (1999). Int. J. Quantum Chem. 71, 491-497.
- Maslen, E. N., Fox, A. G. & O'Keefe, M. A. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 476-511. Dordrecht, Kluwer.
- Parpia, F. A., Froese, F. C. & Grant, I. P. (1996). Comput. Phys. Commun. 94, 249-271.
- Rez, D., Rez, P. & Grant, I. (1994). Acta Cryst. A50, 481-497.
- Su, Z. & Coppens, P. (1997). Acta Cryst. A53, 749-762.
- Su, Z. & Coppens, P. (1998). Acta Cryst. A54, 646-652.
- Wang, J., Smith, V. H., Bunge, C. & Járegui, R. (1996). Acta Cryst. A52, 649-658.
- Watson, R. E. (1958). Phys. Rev. 111, 1108-1110.
- Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. (1994). L-BFGS-B, Fortran Subroutine for Large-Scale Bound Constrained Optimization. Department of Electrical Engineering and Computer Science, Northwestern University, IL, USA.