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Abstract: Accurate and fast evaluation of electrostatic interactions in molecular systems is still one of the most
challenging tasks in the rapidly advancing field of macromolecular chemistry, including molecular recognition, protein
modeling and drug design. One of the most convenient and accurate approaches is based on a Buckingham-type
approximation that uses the multipole moment expansion of molecular/atomic charge distributions. In the mid-1980s it
was shown that the pseudoatom model commonly used in experimental X-ray charge density studies can be easily
combined with the Buckingham-type approach for calculation of electrostatic interactions, plus atom–atom potentials for
evaluation of the total interaction energies in molecular systems. While many such studies have been reported, little
attention has been paid to the accuracy of evaluation of the purely electrostatic interactions as errors may be absorbed
in the semiempirical atom–atom potentials that have to be used to account for exchange repulsion and dispersion forces.
This study is aimed at the evaluation of the accuracy of the calculation of electrostatic interaction energies with the
Buckingham approach. To eliminate experimental uncertainties, the atomic moments are based on theoretical single-
molecule electron densities calculated at various levels of theory. The electrostatic interaction energies for a total of 11
dimers of �-glycine, N-acetylglycine and L-(�)-lactic acid structures calculated according to Buckingham with
pseudoatom, stockholder and atoms-in-molecules moments are compared with those evaluated with the Morokuma–
Ziegler energy decomposition scheme. For �-glycine a comparison with direct “pixel-by-pixel” integration method,
recently developed Gavezzotti, is also made. It is found that the theoretical pseudoatom moments combined with the
Buckingham model do predict the correct relative electrostatic interactions energies, although the absolute interaction
energies are underestimated in some cases. The good agreement between electrostatic interaction energies computed
with Morokuma–Ziegler partitioning, Gavezzotti’s method, and the Buckingham approach with atoms-in-molecules
moments demonstrates that reliable and accurate evaluation of electrostatic interactions in molecular systems of
considerable complexity is now feasible.
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Introduction

According to the Morokuma–Ziegler energy partitioning
scheme1–3 the total intermolecular monomer-monomer interaction
energy Eint is written as

Eint � Ees � EPauli � Eoi (1)

where Ees is the electrostatic interaction energy, EPauli is the Pauli,
or exchange repulsion, which accounts for steric repulsion, and Eoi

(orbital interaction energy) includes charge transfer and polariza-
tion effects that occur upon the relaxation of the interacting system
to its final state. This energy decomposition scheme is similar to
the Kitaura–Morokuma analysis,4,5 which explicitly partitions the
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interaction energy into electrostatic (Ees), exchange, polarization,
and charge transfer contributions.

In most of the Morokuma-type energy decomposition ap-
proaches the electrostatic interaction energy Ees represents a clas-
sic Coulombic interaction between two unperturbed (unmodified)
monomer charge distributions �A and �B, which is defined as 6

Ees � �� � �A�rA��B�rB�

�rA � rB� drAdrB (2)

Although this is an exact expression, it is not readily suitable for
practical applications because of the complicated 6D integration
involved and, if evaluated numerically, requires a precise knowl-
edge of the charge distributions and the ability to calculate them at
any point in space.

Among other methods explored are the generalized Gaussian
quadrature integration in a curvilinear coordinate system7 and
the direct numerical integration with the “pixel-by-pixel” ap-
proach,8 both of which require a significant amount of computa-
tional time. A much simpler form can be obtained when expanding
� rA � rB ��1 as a Taylor series. In the resulting expression9,10
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detailed knowledge of the two charge distributions �A and �B is not
a necessity and instead only the permanent multipole moments q,
�, �, � . . . (monopole, dipole, quadrupole, octopole) of the
unperturbed molecular charge distributions are required. Parame-
ters T�,�,�. . . are the symmetrical interaction tensors of the form9

T���· · · � ������ · · · R�1 (4)

where R is the vector from the origin of A to B and �,�,� represent
x, y, and z, using the Einstein convention for summation over the
indices. This approximation approaches the exact expression (2)
when the distance between the two molecular charge distributions
A and B is much larger then the size of the distributions and when
a sufficient number of high-order terms is included in the expan-
sion. In practice, it is more convenient to replace the molecular
moments by a summation of contributions from the individual
atoms constituting the molecules. Then, expression (3) can be
rewritten in terms of pairwise interactions that run over all atoms
i � 1. . .N(A) and j � 1. . .N(B) constituting molecules A and B,
respectively:11
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Unfortunately, the atomic moments in expression (5) cannot be
determined uniquely as neither the wave function nor the electron
density can be unambiguously partitioned into atomic fragments.
In the approximations used, the partitioning is done on either the
orbitals that construct the wave function or on the density as
calculated directly from the wave function or determined experi-
mentally. Partitioning methods based on the electron density are
more suitable for the purpose of calculating the electrostatic inter-
actions because they directly lead to the definition of the moments
of atomic charge distributions from the molecular electron density.

Two types of electron density partitioning methods, referred to as
fuzzy and discrete boundary partitionings, can be distinguished.11 In
the first case the charge density at each point is assigned to overlap-
ping functions centered at different locations, while in the second all
the density at a given point is assigned to a specific center. Two
examples of fuzzy boundary methods are the stockholder12 and the
pseudoatom partitioning.13,14 In the current study the latter is repre-
sented by the Hansen–Coppens expansion.11,15

Within the atoms-in-molecules (AIM) theory developed by
Bader16–18 the atomic basin of a nucleus � is defined as a discrete
region in space bounded by interatomic surfaces (IASs) that satisfy
the boundary condition of zero flux:18

���r� � n�r� � 0 	 r � surface (6)

where ��(r) is the gradient vector field of the electron density and
n(r) is the vector normal to the surface at r.

The atomic moments are then evaluated as an integral of the
form

A��� � �
�

Â��r�d
 (7)

where Â is the moment operator and A(�) is the atomic moment
integrated over the basin �. The application of AIM moments to
the calculation of intermolecular electrostatic interaction energies
Ees has been extensively studied by Popelier et al. based on
supermolecular calculations on a number of organic molecules of
different sizes and complexity,19–21 including DNA base pairs.
The convergence of the calculated energies as a function of the
cutoff of the order of the moments was shown to be somewhat
slower for the AIM (unless the AIM moments were distributed
over extra nonnuclear sites via a shifting procedure) than for
Stone’s DMA moments,22 which are widely used in force field
calculations, but the resulting energies from the two methods
agreed within 1.3 kJ/mol when higher-order (l � 4) terms were
included in the expansion. The electrostatic interaction energies
calculated with the Buckingham-type expansion were also com-
pared with “exact” values obtained by a 6D double-basin integra-
tion of (2) for each atom–atom pair in the supermolecule. In this
definition the exact values also include the penetration energy that
occurs upon overlapping of two charge distributions at close
distances. Thus, the electrostatic energies calculated from the
Buckingham-type expansion can be considered only as an approx-
imation to the exact energies calculated by double-basin integra-
tion. Nevertheless, a good agreement between AIM-based and
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exact values of Ees has been reported with the differences never
exceeding 6 kJ/mol with an average discrepancy of 1–2 kJ/mol.

Hirshfeld’s fuzzy-boundary stockholder partitioning12 can
equally well be applied to theoretical and experimental electron
densities. According to this method, the actual molecular density
�(r) at each point is divided among the atoms of the molecule in
proportion to their respective contributions to the promolecule
density at that point:

�i
stock�r� � wi�r���r� �

�i
free atom�r�

�i
promol�r�

��r� (8)

where the promolecule density is defined as �promol � ¥i �i
free atom(r)

and �i
free atom(r) are the densities of the free spherically averaged

atoms. The application of stockholder moments in the calculation
of intermolecular interactions in hydrogen-bonded small organic
systems has been discussed in detail by Spackman.6 According to
the formalism used in his studies, the total intermolecular interac-
tion (binding) energy is partitioned as follows:

Eint � Ees � �Erep � Edisp� � Epen (9)

where the electrostatic interaction energy Ees is calculated accord-
ing to the Buckingham-type expansion (5), the repulsion (Erep) and
dispersion (Edisp) forces are approximated using exp-6 potentials
derived earlier,35 and Epen, the penetration electrostatic contribu-
tion, is defined6 as the interaction of the spherical charge distri-
bution of one molecule with the deformation charge density of the
second.23 The total intermolecular bonding energies obtained us-
ing stockholder atoms were compared with those calculated from
Stone’s DMA expansion22,24 and the generalized scattering factor
approach (GSF).25 The results show good agreement in total
binding energies between the Buckingham-type approximation
with stockholder, DMA, and GSF moments and those obtained
directly from supermolecular calculations, the differences being
only about 2 kJ/mol. The inclusion of octapolar and hexadecapolar
moments was shown to be an important factor in reaching con-
vergence in the energy. However, no attempts were made to
analyze the accuracy of the evaluation of the purely electrostatic
component of the total binding energies.

The multipolar model of Hansen and Coppens11,15 is com-
monly used in experimental X-ray determinations of charge den-
sities in molecular crystals. The static charge density in the crystal
is described by the superposition of aspherical nucleus-centered
pseudoatoms �i

pseudo(r)

�i
pseudo�r� � �i

core�r� � �i
val�r� � �i

def�r� (10)

where the terms �core(r) and �val(r) represent the spherically av-
eraged core and valence densities, respectively, and �def(r) de-
scribes the aspherical deformation density. Detailed descriptions of
the parameters included in Hansen–Coppens pseudoatom expan-
sion are given in refs. 11 and 15.

The remarkable transferability of the pseudoatom parameters
determined from experimental X-day data has been long noted. In
the mid-1990s Lecomtes group reported a databank with the most
significant pseudoatom parameters for light atoms, based on ex-

perimental charge density studies of a series of amino acids and
oligopeptides.26 Application of the databank parameters resulted in
more accurate thermal and positional parameters than in spherical
atom refinements of crystal structures. Also, the electrostatic po-
tential for several molecules, calculated based on the databank
parameters only, was shown to agree well with results based on the
actual pseudoatom parameters from aspherical refinement of ex-
perimental X-ray structure factors.

Koritsanszky et al.27 pointed out that for such a databank
pseudoatom parameters based on the refinement of theoretical
single-molecule, rather than experimental structure factors, pro-
vide an alternative. With theoretical data it is possible to obtain
pseudoatom parameters free of experimental errors and not af-
fected by possible anisotropic nuclear motions. It also allows a
great variety of atom types and systems to be studied. Examination
of a series of polypeptides showed that pseudoatom parameters are
highly transferable and rather invariable on rotation around single
bonds in the peptide framework.

Calculation of electrostatic interactions based on both theoret-
ical and experimental pseudoatoms have been reported by several
authors.23,28–34 However, most of these studies dealt with either
the total interaction energies in dimers or with the molecular
binding and/or lattice energies in crystals. As in the stockholder
moment study by Spackman, the electrostatic interaction was not
examined separately but rather as a part of the total interaction
energy. With different types of atom–atom potentials35–37 used to
approximate repulsion and dispersion forces the consistency in the
calculation of electrostatic energies could not be tested.

As transferability has already been established, the current study is
a logical next step in the development of the pseudoatom databank. It
deals with the practical application of the databank pseudoatom pa-
rameters in the calculation of the monomer molecular moments and
the electrostatic contribution to the interaction energies in dimers. The
Morokuma–Ziegler energy partitioning scheme included in the den-
sity functional theory (DFT) package ADF38–40 allows the evaluation
of the purely electrostatic interaction energy, which should be directly
comparable with electrostatic energies calculated via a Buckingham-
type expansion. Thus, the ambiguity of using the atom–atom poten-
tials (required for calculation of the total intermolecular binding
energy, which is usually compared with supermolecular calculations)
is eliminated in this study. To estimate the effect of the partitioning
method on the calculation of the total molecular moments and elec-
trostatic interaction energies, the results calculated with databank and
model pseudoatoms are compared to those obtained with stockholder
and AIM moments derived from the same starting wave functions.
This approach allows separation of the effects of the approximations
used in calculation of the electrostatic interaction energies from those
introduced by the partitioning model itself.

Computational Details

Crystal Data

In this study the unoptimized molecular and dimer geometries
directly extracted from the crystal structures of �-glycine (Gly),
N-acetylglycine (AcG), and L-(�)-lactic acid (Lac) were used.

Electrostatic Interaction Energies in Molecular Dimers 923



Structural parameters for Gly [Fig. 1(a)] (C2H5NO2, space
group P21/n) were taken from a recent accurate X-ray charge
density study at 23 K by Destro et al.41 The positions of the
hydrogen atoms determined in this study agree within 2.3 e.s.d.s
with the 15-K neutron results. The crystal structure of Gly shows
six distinct dimers (Fig. 2). Four of the six dimers involve
N-H. . .O interactions of NH3

� and COO� groups. Two are head-
to-tail dimers with RH. . .O � 1.75 (Gly1) and 1.82 Å (Gly2), two
are symmetrical dimers with two contacts N-H. . .O related by a
center of symmetry with RH. . .O � 2.39 and 2.04 Å for Gly3 and
Gly4, respectively, while the remaining two are characterized by
C-H. . .O interactions between CH2 and COO� groups, with
RH. . .O � 2.41 and 2.34 Å for dimers Gly5 and Gly6, respectively.

AcG [Fig. 1(b)] (C4H7NO3, space group P21/c) crystal data were
taken from a room-temperature neutron study.42 Two distinct dimers
in the AcG crystal are illustrated in Figure 3. The first (AcG1) is
formed by N-H. . .O contacts between NH and COOH groups
(RH. . .O � 2.07 Å) and C-H..O (RH. . .O � 2.51 Å) contacts between
CH3 and COOH groups with the same oxygen O(2) acting as an
acceptor. Because of the center of symmetry there are two equivalent
sets of contacts in dimer AcG1. In the second dimer (AcG2) there is
a short O-H. . .O interaction (RH..O � 1.53 Å and RO. . .O � 2.56 Å).

Structural parameters for Lac [Fig.1(c)] (C3H6O3, space group
P212121) were taken from a 100-K low-temperature X-ray study.43

To compensate for the shortening of X-ray determined bonds, the
H atoms were placed at 1.059 Å from C along COH, 1.015 Å from
O in the carbonyl group, and 0.967 Å from O in the hydroxyl
group along OOH bonds, which correspond to the averaged COH
and OOH distances in C-C-H3, O � C-O-H and C-O-H groups,
respectively.44 Three distinct dimers in the crystal structure of Lac
are shown in Figure 4. The first dimer (Lac1) is formed by the
O-H. . .O interaction between hydroxyl and COOH groups with
RO. . .O � 2.63 Å. The second dimer (Lac2) is an example of a
bifurcated H bond with the hydroxyl group being a donor and both
acceptor oxygen atoms belonging to a COOH group with
ROH. . .OH � 2.34 Å and ROH. . .O � 1.88 Å. The third dimer is
characterized by a CH. . .O interaction between a secondary CH
group and a carboxyl oxygen atom of a COOH group (RCH. . .O �
2.52 Å).

More detailed information on bond distances, angles, and sym-
metry operations required to generate symmetry-equivalent mole-
cules in all dimers is given in Table 1.

Theoretical Calculations

Single-molecule calculations were performed with the GAUSS-
IAN9845 (G98) and ADF2003.0138–40 programs at the DFT level. A
fundamental difference between the two programs is their use of
different primitive functions in the atomic basis set expansions.
GAUSSIAN98 uses Gaussian-type functions exp(��r2) while the
Slater-type functions exp(��r) are used in ADF. GAUSSIAN98
calculations employed the split-valence double-exponential
6-31G**46 and triple-exponential 6-311��G**47 basis sets with
polarization functions, the latter also containing diffuse functions.48 In
ADF the standard double- (DZP) and triple-zeta exponential (TZP)
basis sets with polarization functions were used. DFT calculations in
GAUSSIAN98 were performed with Becke’s three-parameter hybrid
method,49 combined with the nonlocal correlation functional of Lee,
Yang and Parr50 (B3LYP keyword in GAUSSIAN98). In ADF the
Hartree–Fock exchange is not implemented, which excludes use of
hybrid-type functionals such as B3LYP. Therefore, Becke’s 1988
exchange51 combined with Lee, Yang, and Parr’s correlation func-
tional50 (BLYP) was used in all ADF calculations.

Basis set superposition errors (BSSEs) were accounted for with
the counterpoise correction method.52

Multipole Refinements of Theoretical Structure Factors

Complex static valence-only structure factors in range 0 	
sin�/ 	 1.1 Å�1 were obtained by Fourier transform of the
molecular charge densities for reciprocal lattice points correspond-

Figure 1. Molecular geometries of (a) Gly, (b) AcG, and (c) Lac.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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ing to a pseudocubic cell with 30-Å edges. In the refinement of the
static theoretical data, performed with the XD package,53 temper-
ature factors and atomic positions were not refined, thus eliminat-
ing an important source of correlation between parameters. Both �
and �
 parameters11 were refined independently for each atom,
while chemically similar hydrogen atoms were allowed to share
the same � and �
 parameters. The multipole expansion was
truncated at the hexadecapolar level (lmax � 4) for the nonhydro-
gen atoms and at the quadrupole level (lmax � 2) for hydrogens, for
which only bond-directed multipolar functions11 with l,m � 1,0
and 2,0 were refined. To reduce the number of refined parameters,
local symmetry constraints were applied to some atoms. A molec-
ular electroneutrality constraint was applied in all refinements.

Multipolar DataBank

The strategy in building the multipolar databank has been dis-
cussed elsewhere.27 However, in contrast to the previous study, in
which molecular geometries were optimized at the molecular me-
chanics level, all single-molecule and dimer calculations used
unoptimized crystal molecular geometries from accurate X-ray or
neutron data extracted from the Cambridge Structural Database.54

Every entry in the databank contains a full set of pseudoatom
parameters sufficient to represent an atom within the Coppens–
Hansen pseudoatom formalism, averaged over a number of calcu-

lations on different molecules. Only parameters statistically dif-
ferent from zero are included for each atom.

Calculation of Atomic Moments

For both GAUSSIAN98 and ADF wave functions calculation of
Cartesian unabridged atomic moments11,55 based on the stock-
holder partitioning method was performed using a FORTRAN77
program specifically written for this study. The free atomic wave
functions of H, C, N, and O atoms for the most stable electronic
states were calculated separately for each functional and basis set.
The integration of the stockholder atoms was implemented using
an adaptive subroutine DCUHRE56 (module 698 in the public
domain TOMS package)57 for the numerical integration of a vector
of integrals over a given hyperrectangular region. The integration
for each atom was done in a cubic volume of dimensions 6 � 6 �
6 Å with the nucleus located in the center of the cube, giving a
numerical integration accuracy of about 10�4 a.u. The integration
was done separately for each atomic moment while forcing the
adaptive numerical integration to approach the desired accuracy.

For GAUSSIAN98 wave functions atomic moments based on
the AIM partition were calculated in the program PROAIMV,58

locally modified to integrate Cartesian unabridged (instead of
traceless) moments, and expanded to include l � 3 and 4 moments.
Determination and integration of AIM atomic basins from ADF

Figure 2. Dimers in the crystal structure of Gly. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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wave functions were performed with a newly developed program
TOPADF, which is based on the programs TOPOND9859 and
TOPXD.60 In TOPADF the first and second derivatives of the
density are evaluated analytically. As in case of PROAIMV, the
Cartesian unabridged moments with l � 4 were integrated.

The computation of unabridged stockholder moments from the
Hansen–Coppens pseudoatom model was performed with a new
version of the XDPROP program,53 which uses the subroutine
DCUHRE for numerical integration, following the same procedure
as described above.

The integrated Cartesian unabridged moments were subsequently
converted to traceless and, finally to spherical tensor form.10

Calculation of Electrostatic Interaction Energies in Dimers
Using Atomic Moments

The calculation of the electrostatic interaction energies between
monomers in dimers was performed using the program MIN16.61

The program uses the Buckingham-type expansion in terms of
Cartesian traceless atomic moments, although it requires spherical
moments in its input. The program can calculate all interaction
tensors up to order L � l1 � l2 � 8 with moments up to the
hexadecapolar level (l � 4) (interactions with L � 5 � 3, 6 � 2,
7 � 1, and 8 � 0 are not supported). Results obtained with MIN16
are in an excellent agreement (within 1 kJ/mol) with those from
ORIENT3.2,62 which uses spherical moments but is limited to
interactions with L � 5, suggesting that interactions of order L �
4 � 2, 3 � 3, 4 � 3, and 4 � 4 either do not have a significant
contribution to the electrostatic interaction energy for the selected
systems or cancel each other. Nevertheless, these interactions were
included in all calculations.

Figure 4. Dimers in the crystal structure of Lac. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

Figure 3. Dimers in the crystal structure of AcG. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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Results

The flowchart of the procedure followed is depicted in Figure 5.
Results of each of the steps are discussed below. The most impor-
tant conclusions are summarized at the end of the article.

Total Molecular Moments

For a given charge density distribution of an isolated molecule the
molecular moments should be independent of the type of parti-
tioning used to separate individual atomic contributions (Tables
S1–S3). Because it is not possible to obtain the unabridged mo-
ments of order 2 and higher directly from pseudoatom parameters,
we decided to apply the stockholder partitioning for charge density
distributions calculated with the pseudoatom model. Below, mo-
ments referred to as obtained from the pseudoatom model are those
calculated via stockholder partitioning of the pseudoatom electron
densities. To our knowledge this is the first time unabridged

moments of order 2 and higher based on the pseudoatom model are
compared with those calculated directly from the wave function.

Inspection of Tables S1–S3 shows that summations of individ-
ual atomic stockholder, pseudoatom and AIM moments based on
original wave function densities yield essentially the same total
molecular moments as calculated analytically from corresponding
wave functions except for Lac and AcG, for which exceptions
occur both in the case of pseudoatom moments from aspherical
atom refinements of theoretical structure factors and for the data-
bank.

For Gly all molecular moments based on the pseudoatom
model agree well with those calculated by other methods. For the
dipole moment (including all three of its components) the agree-
ment is almost perfect. Even for moments of orders 2–4 the
observed differences are small and the sign of the components is
usually the same. The most striking feature of Table S1 is the fact
the molecular moments calculated from the databank pseudo-
atoms are of the same order of accuracy as the model pseudoatoms.

The differences between pseudoatom and other partitioning
methods for Lac and AcG are more pronounced. It is disturbing
that the X component of the AcG molecular dipole moment
calculated from model pseudoatoms, although small, has the op-
posite sign than that from the other methods. For the other two
components (Y and Z), the signs are correctly retained but the
values are slightly underestimated. As a result, the magnitude of
the small molecular dipole moment vector in AcG from model
pseudoatoms (1.8 D) is underestimated compared to other methods
(2.8–3.0 D) and is almost perpendicular to that from the original
wave function (Fig. 6). All three components of the dipole moment
vector calculated from databank pseudoatoms are closer to the
exact values than to those from model pseudoatoms, although the
X component still has the incorrect sign. As a result, the direction
of the dipole moment vector calculated from the databank lies
somewhere between the exact and the model directions. In Lac

Table 1. Geometric Parameters of Dimers in Crystal Structures of Gly, AcG, and Lac.

Dimer D H A Symmetry code
DOH

(Å)
H . . . A

(Å)
D . . . A

(Å)
DOH . . . A

(°)

Gly1 N(3) H(6) O(1) x, y, �1 � z 1.04 1.75 2.77 167
Gly2 N(3) H(7) O(2) 1 � x, y, z 1.02 1.82 2.84 170
Gly3a N(3) H(8) O(1) 1 � x, �y, 2 � z 1.02 2.39 2.94 113
Gly4a N(3) H(8) O(2) �x, �y, 2 � z 1.02 2.04 3.01 156
Gly5 C(5) H(9) O(1) �1/2 � x, 1/2 � y, �1/2 � z 1.08 2.41 3.30 138
Gly6 C(5) H(9) O(2) 1/2 � x, 1/2 � y, �1/2 � z 1.08 2.34 3.22 138

AcG1 N(4) H(11) O(2) �x, 1 � y, 1 � z 1.01 2.07 3.04 162
C(8) H(15) O(2) 1.03 2.51 3.37 141

AcG2 O(1) H(12) O(3) �1 � x, 1/2 � y, 1/2 � z 1.03 1.53 2.66 176

Lac1 O(1) H(7) O(3) 1/2 � x, �y, �1/2 � z 1.01 1.64 2.63 167
Lac2 O(3) H(9) O(2) 1/2 � x, 1/2 � y, 1 � z 0.97 1.88 2.71 143

O(3) H(9) O(3) 0.97 2.34 3.15 141
Lac3 C(5) H(8) O(2) 1 � x, y, z 1.10 2.52 3.37 133

aSymmetrical dimers, i.e., there are two identical H bonds related by the center of symmetry.

Figure 5. Flowchart of the study.
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with both model and databank pseudoatoms the total molecular
moments, 4.2 and 4.0 Debye, respectively, are slightly overesti-
mated compared to the other methods (3.0–3.4 Debye) because of
a small overestimation of each of the X, Y, and Z components. The

second molecular moments of AcG and Lac calculated from both
databank and model pseudoatoms are in good agreement with the
exact values, while significant differences are observed for some of
the components of the third and fourth moments. Again, the
databank performs at the same level of accuracy as the model
pseudoatoms and the discrepancies with the databank are observed
for exactly the same components of the higher moments as with
the model pseudoatoms. The origin of the discrepancies seems to
be related to the procedure used in the aspherical atom refinement.
It is clear that the fitting of the pseudoatom parameters to the
structure factors (Fourier transform of the density) in reciprocal
space does not always provide as accurate a description of the
molecular density in real space (in terms of molecular moments at
least) as do the other partitioning methods, which operate in real
space. The fact that the model structure factors are free of errors
and thermal motion effects does not seem to improve the perfor-
mance. However, it may be assumed that the differences in third
and fourth moments will not have any significant contributions to
the electrostatic energies calculated with the Buckingham expres-
sion because these contributions are usually small, so the accuracy
in determination of first and second moments is much more im-
portant.

The bias in the density introduced by the pseudoatom model
upon refinement of structure factors has been discussed be-
fore.60,63–67 The bias manifests itself in the topological properties
(such as net charges and volumes and properties of � at critical
points) of the density represented by the pseudoatom model when
compared to the model density directly calculated from the wave
function. Its origin has been attributed to the limited flexibility of
the single-exponential radial functions used to describe the defor-
mation part of the density in the pseudoatom model.

Total Interaction Energies

Table 2 and Figure 7 summarize the total dimer interaction ener-
gies Eint for all calculations. In general all calculations employing
DZP basis sets uncorrected for BSSE overestimate Eint, especially
with the Gaussian basis set 6-31G**, for which the average BSSE
is 13 kJ/mol and the largest BSSE of 27 kJ/mol is observed for

Figure 6. Molecular dipole moment �� in AcG calculated from (a) the
wave function, (b) pseudoatoms after the refinement of model structure
factors, and (c) databank. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Table 2. Total Interaction Energies (kJ/mol) of Dimers in Test Crystal Structures Corrected for
BSSE (Numbers in Parentheses).

Dimers
G98/B3LYP/
6-311��G** ADF/BLYP/TZP

G98/B3LYP/
6-31G**

ADF/BLYP/
DZP

Gly1 �94 (�13) �82 (�3) �99 (�12) �79 (�6)
Gly2 �14 (�3) �15 (�2) �22 (�15) �15 (�6)
Gly3 �108 (�2) �94 (�2) �105 (�21) �89 (�8)
Gly4 �179 (�4) �160 (�4) �183 (�27) �157 (�10)
Gly5 �53 (�3) �47 (�2) �49 (�12) �46 (�5)
Gly6 �25 (�2) �20 (�1) �24 (�9) �19 (�2)
AcG1 �17 (�3) �9 (�2) �17 (�17) �7 (�5)
AcG2 �49 (�1) �45 (�2) �50 (�10) �43 (�7)
Lac1 �31 (�4) �25 (�2) �33 (�12) �27 (�4)
Lac2 �18 (�3) �13 (�2) �19 (�12) �11 (�7)
Lac3 �9 (�2) �6 (�1) �7 (�6) �5 (�3)
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dimer Gly4. On the other hand, for the Slater-type DZP basis set
the BSSEs are much smaller—about 6 kJ/mol on average and at
most 10 kJ/mol also for the dimer Gly4. These results are in
agreement with those published before68 in which the double-zeta
Slater basis set with polarization functions was shown to produce
a smaller BSSE compared to Gaussian 6-31G** basis sets for a
number of H-bonded neutral dimers of small molecules. For the
triple-zeta basis sets the BSSEs are almost negligible (2–4 kJ/mol)
and the difference in BSSEs between Slater and Gaussian func-
tions practically vanishes.

Differences in total interaction energies between GAUSS-
IAN98 and ADF calculations appear more significant than the
BSSEs. These differences arise from the different type and number
of primitive functions and from the different DFT functionals used
in the GAUSSIAN98 and ADF calculations. Indeed, when com-
paring the triple-zeta G98/B3LYP/6-311��G** and ADF/BLYP/
TZP calculations the former seems to produce larger absolute
values for Eint in all dimers (except Gly2), which defines stronger
attractive and stronger repulsive interactions. For Gly2 both cal-
culations predict essentially the same interaction energy of 14–15
kJ/mol. The differences seem to increase with the absolute values
of Eint, reaching a maximum of 19 kJ/mol for Gly4, with the
largest Eint �179 kJ/mol for G98 and �160 kJ/mol for the ADF
results. However, the mean difference between triple-zeta G98 and
ADF calculations for all 11 dimers is only about 7 kJ/mol.

Because it was not possible to obtain the electrostatic interac-
tion energies of monomers in dimers, defined by expression (2),
directly from the G98 calculations, we will concentrate on our
comparison of Eint with Ees in the ADF calculations. In general, the
electrostatic energy makes a significant contribution and when
attractive is always larger in magnitude than the total interaction
energy (Table 3). The other two contributions to the total interac-
tion energy (based on Morokuma–Ziegler energy partitioning),
exchange repulsion and orbital interaction, are also large but
virtually cancel each other for several dimers (Gly4, Gly5, Gly6,

and Lac3), which brings Ees within 10 kJ/mol of the Eint in these
cases. Dimer Gly5 is the only one in this study for which the
electrostatic interaction shows a significant repulsive character.
Strong exchange repulsion forces (55–133 kJ/mol) are observed in
all other dimers, yet the sum of Ees and Eoi outweighs the repulsion
and the total interaction character in these dimers is attractive.
These results are in qualitative agreement with the previously
performed studies of the energy decomposition in DNA bases69

using Morokuma–Ziegler energy decomposition and with a num-
ber of small molecule organic dimers with the Kitaura–Morokuma
approach.70 In the first study the reported absolute values of Ees,
EPauli, and Eoi were smaller and the Ees values were consistently
closer to Eint (within 6–18 kJ/mol) compared to the energies in this
study. In the second study, the absolute values of the energies were
much smaller than those calculated in this study, yet Ees always
accounted for at least 50% of the total interaction energy.

Thus, our results confirm that Ees provides a good estimate of
the bonding strength in the selected molecular dimers, although the
use of Ees alone would overestimate the attractive component of
the total interaction energy.

Electrostatic Interaction Energies

The relative order of the electrostatic interaction energies (attrac-
tive or repulsive) for all dimers determined with the Morokuma–
Ziegler method is independent of the basis sets in the cases
examined (Table 4). The exact values calculated with ADF at the
BLYP level with the TZP and DZP basis sets differ from each
other only by about 4 kJ/mol on average and at most 9 kJ/mol for
dimer AcG2, the TZP values being always lower. Such an agree-
ment suggests that the electrostatic interactions in selected systems
based on the unperturbed densities of the isolated molecules are
not much dependent of the basis set chosen, at least when based on
the exact expression. In the following we will use the results from
the TZP calculations for the exact reference values of Ees as they
should be more accurate than those from the DZP basis.

In general, the Buckingham-type calculations of Ees predict the
correct relative electrostatic interaction energies in the majority of
cases with the exception of the pair of dimers Gly2 and Gly6, for

Table 3. Contributions to the Total Dimer Interaction Energies (kJ/mol)
According to the Morokuma–Ziegler Decomposition for ADF/BLYP/
TZP Calculations.

Dimer Ees EPauli Eoi EPauli � Eoi Eint

Gly1 �115 �89 �56 �33 �82
Gly2 �37 �69 �48 �21 �15
Gly3 �109 �54 �40 �14 �94
Gly4 �165 �84 �79 �5 �160
Gly5 �39 �22 �14 �8 �47
Gly6 �27 �18 �12 �6 �20
AcG1 �48 �60 �21 �39 �9
AcG2 �99 �133 �79 �54 �45
Lac1 �70 �95 �50 �45 �25
Lac2 �44 �55 �24 �31 �13
Lac3 �13 �11 �3 �8 �6

Figure 7. Total interaction energies from dimer calculations. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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which the relative order of electrostatic energies is always reversed
compared to the exact values. For example, the symmetrical dimer
Gly4 is correctly predicted to be the most stable in terms of Ees, by
all methods, with a range of �130 to �166 kJ/mol. The only dimer
with a repulsive electrostatic interaction, Gly5, is also identified by
all methods (Ees � 35–55 kJ/mol). In general, when attractive, the
electrostatic interaction energies calculated with the Buckingham-
type expansion are somewhat underestimated compared with the
exact values. The magnitude of underestimation varies and seems
to be dependent on several factors, including the geometry of the
dimers and, more importantly, the partitioning method itself.

Basis Set Effects

Inspection of Table 4 shows the basis set dependence of the Ees

calculated with the Buckingham-type expansion (Fig. 8). Indeed,
for both stockholder and AIM moments the double-zeta basis sets
always underestimate Ees compared to the triple-zeta sets, exactly
as for exact Ees energies, although the discrepancies between
triple-zeta and double-zeta values can be larger in the Bucking-

Figure 8. Differences in electrostatic interactions energies (kJ/mol)
between DZP and TZP calculations for all test dimers.

Figure 9. Difference between the exact electrostatic interaction en-
ergy and that calculated from the Buckingham-type expansion (�Ees)
for different atomic partitions as a function of the closest intermolec-
ular contact. Calculations: ADF-1, ADF/BLYP/TZP; ADF-2, ADF/
BLYP/DZP; G98-1, GAUSSIAN98/B3LYP/6-311��G**; G98-2,
GAUSSIAN98/B3LYP/6-31G**.

Table 4. Electrostatic Interaction Energies Between Two Monomers in Each of the Dimers (kJ/mol).

Dimer

Morokuma–Ziegler

Buckingham-type approach

Stockholder moments AIM moments

Pseudoatom
moments

ADF-1 ADF-2 ADF-1 ADF-2 G98-1 G98-2 ADF-1 ADF-2 G98-1 G98-2 G98-2 Databank

Gly1 �115 �108 �86 �82 �101 �92 �92 �88 �106 �94 �83 �86
Gly2 �37 �35 �15 �15 �15 �14 �16 �15 �15 �13 �10 �4
Gly3 �109 �102 �74 �68 �87 �82 �95 �88 �110 �96 �78 �83
Gly4 �166 �165 �134 �130 �154 �143 �142 �138 �163 �149 �134 �133
Gly5 �43 �35 �47 �44 �55 �52 �48 �45 �55 �52 �53 �53
Gly6 �26 �26 �20 �20 �23 �22 �24 �23 �26 �24 �20 �19
AcG1 �48 �47 �27 �27 �31 �27 �31 �31 �35 �29 �27 �25
AcG2 �99 �90 �68 �63 �74 �63 �92 �88 �94 �69 �30 �31
Lac1 �70 �63 �46 �42 �52 �45 �53 �48 �56 �46 �36 �28
Lac2 �44 �42 �27 �26 �30 �27 �25 �24 �28 �26 �21 �21
Lac3 �13 �14 �9 �9 �11 �9 �9 �9 �11 �9 �16 �15

ADF-1, ADF/BLYP/TZP; ADF-2, ADF/BLYP/DZP; G98-1, GAUSSIAN98/B3LYP/6-311��G**; G98-2, GAUSS-
IAN98/B3LYP/6-31G**.
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ham-type analysis. Thus, for negative Ees the triple-zeta energies
are closer to exact while for the dimer Gly5 in which the Ees is
positive the double-zeta calculations agree better with the exact
Ees. In general, for ADF moments the differences between triple-
zeta and double-zeta Ees are relatively small—on average about 2
kJ/mol for stockholder atoms and 3 kJ/mol for AIM partitioning.
The largest discrepancy is only 7 kJ/mol for the dimer Gly3 from
ADF/AIM calculation. These differences are comparable to those
obtained for the exact Ees calculated in ADF with TZP and DZP
basis sets. For GAUSSIAN98 moments from stockholder parti-
tioning the differences between Ees from triple-zeta and double-
zeta basis sets are also not large: at most 11 kJ/mol for dimers Gly4
and AcG2 and on average about 5 kJ/mol. The most significant
basis set dependence of Ees calculated with the Buckingham-type
expansion is observed with GAUSSIAN98 AIM moments. The
largest discrepancy between triple-zeta and double-zeta is as large
as 25 kJ/mol for dimer AcG2 and larger than or equal to 10 kJ/mol
for dimers Gly1, Gly3, Gly4, and Lac1 (10–14 kJ/mol). Because
the discrepancies for other dimers are small, the average difference
in Ees between triple-zeta and double-zeta basis sets for GAUSS-
IAN98 AIM moments is only 8 kJ/mol. Detailed analysis of the
contributions to Ees (Table 5) shows that these discrepancies
mainly result from different charge–dipole contributions for Gly1,
Gly3, Gly4, and Lac1 dimers and also a different charge–hexade-
capole term for the AcG2 dimer. These contributions almost com-
pletely account for observed differences in the Ees. It should be
noted that these five dimers are either the ones with the shortest
H. . .A distances (AcG2, Lac1, Gly1) or symmetrical dimers (Gly
3 and Gly4). This indicates a pronounced effect of the dimer
geometry that will be discussed below. In general, our results seem
to contradict claims of the relative basis set independence of the
AIM partitioning method.71 Our results, however, show that stock-
holder moments are less basis set dependent than the AIM mo-
ments as clearly indicated by the calculated intermolecular elec-
trostatic energies.

Effect of Partitioning

The choice of density partitioning method from which the atomic
moments are calculated is clearly the most important factor affect-
ing the calculation of Ees from the Buckingham-type expansion.
Despite the fact that in most of the cases the atomic moments
correctly add up to the total molecular moment, as discussed
before, the individual atomic moments of an atom may differ
greatly among the partitioning methods,72 as illustrated in Table 6
for the net atomic charges. On the other hand, the pseudoatom and
stockholder charges, both based on fuzzy boundary electron den-
sity partitioning, are similar but differ considerably from the dis-
crete boundary AIM charges, especially for the carbon and oxygen
atoms of COO� and the nitrogen atom of NH3

� groups.
For the same molecular density, the Ees calculated with AIM

moments are always (in four of four calculations, i.e., ADF/BLYP/
TZP, ADF/BLYP/DZP, G98/B3LYP/6-311��G**, and G98/
B3LYP/6-31G**) closer to the exact values than those calculated with

Table 5. Total Charge-l Contributions to the Ees Calculated From the Buckingham-Type Expansion From
AIM Atomic Moments Based on GAUSSIAN98 B3LYP/6-311��G** (First Row) and B3LYP/6-31G**
(Second Row) Densities for Selected Dimers.

Dimers Charge–charge Charge–dipole
Charge–

quadrupole
Charge–
octapole

Charge–
hexadecapole

Gly1 �144 62 �4 �12 �4
�144 69 �4 �9 �2

Gly3 �133 17 7 0 �2
�133 31 5 0 �1

Gly4 �230 92 �23 �1 �4
�233 104 �22 �1 �4

AcG2 �97 36 4 �18 �11
�103 51 5 �15 �2

Lac1 �80 49 �15 �4 �2
�83 58 �10 �2 �2

Gly2 14 �19 �4 �7 �1
10 �19 �1 �4 �1

The largest discrepancies appear in bold.

Table 6. Net Atomic Charges (e) From AIM, Stockholder, and
Pseudoatom Partitioning of GAUSSIAN98/B3LYP/6-31G**
Molecular Density of Gly.

Atom qAIM qstockholder qpseudoatom

O1 �1.26 �0.41 �0.31
O2 �1.21 �0.40 �0.30
N3 �1.09 �0.06 �0.12
C4 �1.81 �0.11 �0.05
C5 �0.29 �0.01 �0.30
H6 �0.43 �0.17 �0.19
H7 �0.49 �0.17 �0.21
H8 �0.48 �0.18 �0.21
H9 �0.02 �0.05 �0.06
H10 �0.03 �0.05 �0.07
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stockholder moments. The average differences between the exact Ees

and values calculated with AIM moments are 9, 14, 16, and 17 kJ/mol
for G98/6-311��G**, ADF/TZP, ADF/DZP, and G98/6-31G**
densities, respectively, while for the stockholder moments the dis-
crepancies are 15, 21, 23, and 20 kJ/mol for the same densities. For
GAUSSIAN98 B3LYP/6-31G** calculation, the only one for which
the pseudoatom moments have been also obtained, the accuracy of
calculated Ees decreases in the sequence AIM  stockholder 
pseudoatoms. The largest discrepancies between exact and calculated
Ees for each partitioning type are 30 kJ/mol in AcG2, 41 kJ/mol in
Gly3, and 69 kJ/mol in AcG2 for AIM, stockholder, and pseudoatom
moments, respectively. This suggests that with the Buckingham-type
expansion more accurate intermolecular Ees are obtained when using
atomic moments based on AIM partitioning, especially those ex-
tracted from a high-quality calculation such as B3LYP/6-311�G**.
Stockholder and, especially, pseudoatom moments give much less
accurate values for the intermolecular Ees, although the sequence of
the values is in general reproduced.

As the atomic moments are dependent on the partitioning method
(see, e.g., Table 6) it is important to analyze the individual multipole
contributions to the electrostatic interaction energy Ees (Tables S4–
S14). In all cases the most important contributions are from charge–
charge and charge–dipole interactions. For all dimers with an attrac-
tive Ees the contribution of charge–charge terms is also attractive,
although the absolute values are much larger for AIM moments
because of the larger net atomic charges. The large attractive charge–
charge term with AIM moments is opposed by strongly repulsive
charge–dipole term, while for stockholder and pseudoatoms this term
is attractive and for some dimers (AcG1,AcG2, Lac2, and Lac2) even
dominates the charge–charge term. The other important, although
much less significant, terms for stockholder and pseudoatoms are
dipole–dipole (always attractive), charge–quadrupole (mostly attrac-
tive), and dipole–quadrupole (mostly attractive). For AIM moments
the convergence is clearly much slower than for fuzzy boundary
moments with even hexadecapole–hexadecapole contributions being
significant for some of the dimers (AcG1 and AcG2). In the electro-
statically repulsive dimer Gly5 the charge–charge contribution is
strongly repulsive for all methods. Despite significant differences in
individual contributions, the total electrostatic interaction energies

calculated with the Buckingham-type expression agree well among
different partitioning methods for most of the dimers. The largest
disagreement is observed in dimers with short intermolecular con-
tacts, indicating that the geometry may affect the adequacy of a
particular approach.

Geometry Effects

In Figure 9 the differences between exact Ees and values calculated
with the Buckingham-type approach are plotted versus the shortest
intermolecular contact for each of the dimers. Inspection of the figure
shows that, as for the basis set differences, the largest discrepancies
tend to occur at the shortest distances (1.5–1.8 Å) as well as for
symmetrical dimers Gly3 (2.04 Å) and Gly4 (2.39 Å) for all but AIM
moments. With pseudoatoms (both model and databank) the discrep-
ancies with exact energies in these cases can be as large as 68–69
kJ/mol. For longer interactions the performance of pseudoatoms be-
comes closer to both stockholder and AIM moments.

Pseudoatom DataBank

One of the main goals of this study is to examine the performance
of the theoretical pseudoatom databank when applied to calcula-
tion of electrostatic interaction energies. Inspection of the last two
columns in Table 4 and Figure 9 clearly shows the results obtained
from databank pseudoatoms to be comparable in accuracy with the
energies calculated from model pseudoatoms. The average differ-
ence is only 3 kJ/mol and the largest discrepancy is only 6 kJ/mol
for dimer Gly2. In some cases the Ees calculated from databank
pseudoatoms are even closer with the exact energies than those
from model pseudoatoms, which again demonstrates the remark-
able transferability of pseudoatom parameters.

Comparison with Gavezzotti’s Method and with Experimental
Values for Gly

Table 7 summarizes the electrostatic interaction energies in dimers
of Gly for selected calculations performed in this study, those
published in the literature based on a fully theoretical approach

Table 7. Electrostatic Interaction Energies (kJ/mol) in Dimers of Gly From Different Methods.

Dimer
Morukuma–Ziegler
ADF/BLYP/TZP

Gavezzottia

G98/MP2/6-
31G** total

density

Buckingham-type expression

Stockholder
G98/

B3LYP/6-
311��G**

AIM G98/
B3LYP/6-

311��G**
Pseudoatoms
experimentb

Pseudoatoms
G98/B3LYP/

6-31G**

Gly1 �115 �122 �101 �106 �139 �83
Gly2 �37 �23 �15 �15 �2 �10
Gly3 �109 �108 �87 �110 �149 �78
Gly4 �166 �152 �154 �163 �231 �134
Gly5 �43 �57 �55 �55 �94 �53
Gly6 �26 �22 �23 �26 �38 �20

aRef. 8a.
bRef. 41.
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pioneered by Gavezzotti [semiclassic density sum (SCDS)],8 and
those from experimental pseudoatom moments obtained from an
accurate X-ray charge density study using the Buckingham-type
approximation.41 It is fascinating to find a good agreement for
electrostatic interaction energies obtained with the theoretical
Morokuma–Ziegler, Gavezzotti, and Buckingham (based on theo-
retical AIM B3LYP/6-311��G** moments) approaches despite
the significant differences in Hamiltonians and basis set expan-
sions used for monomer calculations. The agreement for the Buck-
ingham-type approach using stockholder moments is slightly
worse than for AIM moments. While the increased interaction
energies obtained with experimental pseudoatoms may be attrib-
uted to an additional polarization of the molecular charge distri-
bution in the crystal because of intermolecular interactions,8 this
explanation cannot be used to explain the discrepancies between
theory and results obtained with theoretical (both model and da-
tabank) pseudoatoms that have been obtained based on unper-
turbed ground-state molecular charge distributions.

Discussion and Conclusions

In this study we investigated the calculation of electrostatic and
total intermolecular interaction energies in a total of 11 dimers in
3 different molecular systems. The electrostatic interaction ener-
gies were calculated exactly according to expression (2), as im-
plemented in ADF within the Morokuma–Ziegler energy decom-
position approach, and with the Buckingham-type approximation
(5) using atomic moments derived from three different partitioning
methods: stockholder, AIM, and pseudoatoms.

Comparison of the total and electrostatic interactions energies
suggests that Ees alone can be used to estimate the relative strength of
bonding in dimers despite the fact that it overestimates the strength of
attractive and underestimates the strength of repulsive interactions.

Calculations based on the Buckingham-type approximation in
general underestimate the attractive and slightly overestimate re-
pulsive electrostatic interactions (although for the latter case there
is only one example in our study). However, the discrepancies in
Ees produced by the AIM moments are much smaller than those
with other partitioning schemes, especially for dimers AcG2 and
Lac1, which have the shortest intermolecular contacts (1.53 and
1.64 Å, respectively) among all the systems examined in this
study, and the symmetrical dimers Gly3 and Gly4 with two iden-
tical, but relatively long, intermolecular contacts at 2.04 and 2.39
Å. This is attributed to the fundamental differences in the defini-
tion of the atoms (and thus the atomic moments) in different
partitioning methods—discrete for AIM and overlapping for
stockholder and pseudoatoms, the latter being the most delocal-
ized. This can account for large discrepancies in Ees at shortest
distances and symmetrical dimers. Nevertheless, the pseudoatoms
derived from theoretical densities are successful in predicting the
relative strength of the electrostatic interactions in the test dimers.

On the other hand, the pseudoatom partitioning is rather attractive
as the pseudoatoms not only can be used to reconstruct the molecular/
crystal electron densities via simple analytic expressions, which al-
lows electrostatic and topological properties be evaluated and studied,
but also are highly transferable. The latter is clearly demonstrated by
the fact that the molecular moments in monomers and electrostatic

interaction energies of dimers calculated with databank pseudoatoms
are in good agreement with those calculated from model pseudo-
atoms. The problem of the pseudoatoms not correctly determining the
total molecular moments in some cases can be attributed to the
ambiguity in their determination via a fitting procedure in the discrete
reciprocal space (i.e., aspherical refinement of structure factors). We
find that even a very good fit to the structure factors (3% on the
valence-only structure factors and about 0.6% on the structure factors
calculated from the total density) does not always result in the correct
multipole moments and can introduce a bias in the total molecular
density distribution. This bias is even observed with theoretical model
data in which the nuclei positions are fixed, no thermal smearing of
the charge density is present, and the structure factors are calculated
with 100% accuracy and up to any sin�/ cutoff. Determination of the
pseudoatom parameters by fitting to the model theoretical density in
direct space may be preferable and is to be explored. Such an ap-
proach would involve a minimization of an integral of the form
�(�wfn � �mult)

2dv with optimization schemes such as the Newton–
Raphson, steepest descent, or conjugated gradient method.73 Another
possible way to raise the accuracy in the determination of Ees with
pseudoatoms to that with the stockholder moments is to first partition
the molecular density into stockholder atoms and then fit the pseudo-
atom parameters to the numerically evaluated stockholder atoms. With
such a procedure the multipole atomic and molecular moments will be the
same, within the accuracy of the fit, as in stockholder partitioning.74

The stockholder atoms can also be used to reconstruct the total
molecular density, but because of their numerical nature cannot be
used for such purpose as easily as pseudoatoms. It is highly
unlikely that the AIM atoms can be used to reconstruct the total
density because these are discrete quantities and may leave empty
spaces (gaps) in the synthesized density. In addition, because of
their complicated numerical nature they cannot be readily repre-
sented analytically.

An important result of this study is the good agreement be-
tween electrostatic interaction energies in Gly dimers obtained
with the Morokuma–Ziegler energy decomposition method and
with Gavezzotti’s pixel-by-pixel direct numerical integration de-
spite significant differences in molecular monomer wave functions
used. The Gavezzotti approach should also be applicable to the
electron densities calculated from the databank pseudoatoms and
thus may make it possible to obtain readily available estimates of
molecular interaction energies.
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